首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present study was conducted to examine the nature of the increase in tyrosine aminotransferase (TAT) activity by acute ethanol administration. A significant rise in aminotransferase activity was observed as early as 1 hr after intact rats were gavaged with ethanol. Ethanol administration also increased TAT activity in adrenalectomized rats. Inhibition of ethanol metabolism by pyrazole administration had no effect on the ethanol-induced increase in TAT activity. Immunochemical analyses revealed that the enhancement of TAT activity in ethanol-fed rats correlated with an increase in aminotransferase protein. Measurement of the rate of TAT synthesis showed that in ethanol-fed rats, [3H]leucine was incorporated into the aminotransferase protein at a higher rate than in controls by a factor which was similar to the enhancement in enzyme activity. Our findings indicate that an acceleration of TAT synthesis fully accounts for the increase in TAT activity during the early stage of enzyme induction. TAT induction by ethanol administration is not dependent upon an increase in adrenal corticosteroid production, nor does it require ethanol metabolism.  相似文献   

2.
The K+-stimulated ATPase associated with the purified gastric microsomal fraction can be completely inactivated by treatment with 15% (v/v) ethanol for 60s at 37 degrees C, but not at 25 degrees C. Sequential exposure of the microsomal fraction to 15% ethanol at 25 degrees C and 37 degrees C caused release of 2.5% and 2.9% of the total membrane phospholipids respectively. Restoration of the enzyme activity was achieved by sonication with phosphatidylcholine in the presence of Mg2+, K+ and ATP, which were essential for the reconstitution. Our data suggest that the phospholipids extracted by 15% ethanol at 37 degrees C are derived primarily from the immediate lipid environment of the enzyme, and ATP, together with the metal ions, helps the partially delipidated enzyme to retain the appropriate configuration for the subsequent reconstitution.  相似文献   

3.
S M Kazmi  N Z Baquer 《Enzyme》1985,34(2):57-63
Studies with brain alanine aminotransferase showed higher activity of the enzyme in the soluble fraction of cerebellum. Among the tissues, the liver soluble fraction was the richest source of the enzyme. Alloxan-induced diabetes caused both regional and time-dependent variations in the activity of brain alanine aminotransferase. Significant among these changes were the decrease in both soluble and particulate enzyme from cerebral hemispheres and an increase in the soluble enzyme activity from cerebellum at early stages of diabetes. Brain stem did not show any marked change in enzyme activity. Liver and heart enzyme, however, increased significantly after 1-2 weeks of diabetes. Insulin treatment to diabetic animals caused an 'over-shoot' in soluble alanine aminotransferase activity, particularly in cerebellum and liver.  相似文献   

4.
Homogeneous aspartate aminotransferase has been prepared from chicken heart cytosol. The purification procedure includes fractionation with NH4-sulfate and with ethanol, chromatography on ion-exchange cellulose DE-32 and on hydroxylapatite. Crystallization of the enyme is described. The enzyme was shown to contain 4 SH-groups per protein subunit of molecular weight 50 000. Two of the SH-groups are fully buried, they can be blocked with thiol reagents only upon denaturation of the protein. One exposed SH-group is readily modified at alkaline pH by iodoacetamide, N-ethymaleimide or tetranitromethane, without any inhibition of enzymic activity; this group readily reacts also with 5,5,-ditthiobis (2-nitrobenzoate) and p-mercuribenzoate. One SH-group is semi-buried: it is inaccessible to the above-mentioned reagents at pH 8, but can be blocked by p-mercuribenzoate at pH about 5. Blocking with p-mercuribenzoate of two SH-groups-the exposed and the semi-buried one-lowers enzymic activity to 70% of the initial value. Syncatalytic modication of a SH-group observed in aspartate aminotransferase from pig heart cytosol does not occur in chicken enzyme.  相似文献   

5.
Gallic acid, a polyphenyl class natural product from gallnut and green tea, is known to be antioxidant, anti‐inflammatory and radical scavenger. In this study, we aimed to investigate the possible protective effects of gallic acid on paraoxonase and arylesterase activities in liver exposed to acute alcohol intoxication. Paraoxonase and arylesterase activities in liver tissue and serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were measured. Histological investigations were also made. In our study, we observed a significant increase of serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, which are indicators of liver damage after acute ethanol consumption. Gallic acid therapy has significantly reduced the increase in these biomarkers, indicating a possible hepatoprotective effect of gallic acid. Ethanol consumption caused a significant decrease in liver paraoxonase activity (P < 0.001). Gallic acid treatment partly restored this decreased paraoxonase activity, which resulted from ethanol administration. A gallic acid dose of 100 mg/kg was observed as highest restoring effect for paraoxonase activity (P < 0.05). The activity of arylesterase was decreased in the ethanol group as compared with the control group, but this was not significant. However, 50 mg/kg of gallic acid treatment restored the loss of this activity due to ethanol exposure (P < 0.001). We observed that gallic acid ameliorates the liver damage caused by excessive alcohol consumption in a dose‐dependent way. Our results in this study showed that gallic acid might have a protective effect against alcoholic liver disease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The administration of l-tryptophan to both intact and adrenalectomized animals results in a marked increase in the activity of tyrosine aminotransferase. Maximal increases in enzyme activity are stimulated by doses of l-tryptophan much lower than those required for maximal stimulation of tryptophan oxygenase activity in vivo. When l-tryptophan was administered to animals that had been given cortisone 5 hr earlier, a further sustained increase in enzyme activity was demonstrated. 5-Hydroxy-dl-tryptophan and indole administration in amounts equimolar to l-tryptophan also result in similar increases in activity whereas α-methyl-dl-tryptophan produces little or no increase.Utilizing pulse-labeling in vivo with quantitative immunochemical precipitation of tyrosine aminotransferase by specific antisera, it was demonstrated that the administration of tryptophan caused an increase in enzyme amount with no concomitant increase in the rate of enzyme synthesis. In animals given cortisone, subsequent injections of tryptophan caused the amount of enzyme to continue to increase while both the amount of enzyme in control animals, as well as the rates of synthesis in both tryptophan-treated and control animals, decreased in a parallel fashion. Prelabeling of tyrosine aminotransferase in vivo after the enzyme had been induced with cortisone demonstrated that the subsequent administration of tryptophan caused a marked inhibition in the decay of the radioactive enzyme, as well as in enzyme activity. These data support the proposal that the amino acid, tryptophan, has a special role both in the maintenance of hepatic protein synthesis and in the regulation of specific enzyme degradation in rat liver.  相似文献   

7.
C. L. Hedley  J. L. Stoddart 《Planta》1971,100(4):309-324
Summary The activity of alanine aminotransferase (=glutamate-pyruvate transaminase, GPT) in dark-grown first leaves of Lolium temulentum L. was increased, after an initial lag-phase of 4–6 hr, by more than 130% during the first 24 hr of light-exposure. In comparison, aspartate aminotransferase (=glutamateoxalacetate transaminase, GOT) activity rose by only 18%. Red light treatments of up to 60 min duration produced subsequent increases in GPT activity but the effects were too small to indicate a phytochrome-mediated response. The amounts of enzyme formed were equivalent to those obtained with similar incident intensities of white light. Retuern to darkness after light exposure resulted in an arrestation of the light-stimulated GPT increase. Pre-treatment with cycloheximide caused either stimulatory or inhibitory effects depending upon the concentration applied but, in general, chlorophyll formation and GPT activity responded in a similar manner, whilst GOT showed virtually no response. Chloramphenicol at 6x10-3 M depressed chlorophyll and Fraction 1 protein synthesis but stimulated GPT activity.The data are discussed in relation to the possible roles of GPT in the leaf. It is suggested that the enzyme, as determined, may be a complex of forms and that at least part of the activity may be involved in the early stages of chlorophyll biosynthesis.  相似文献   

8.
9.
When mitochondria are incubated with radioactively labeled mitochondrial aspartate aminotransferase (EC 2.6.1.1), the enzyme is taken up into the organelles. Mersalyl and p-hydroxymercuriphenyl sulfonic acid, but not N-ethylmaleimide or ethacrynic acid, decrease the extent of this uptake. Inhibition of the uptake by low concentrations of mercurial reagents is due to blockage of a single sulfhydryl group per monomer of the enzyme. Blockage of mitochondrial thiols does not inhibit uptake of the enzyme. A single sulfhydryl group out of a total of six per monomer of the native enzyme reacts with 5,5′-dithiobis-(2-nitrobenzoic acid). This is the same sulfhydryl group that reacts with low levels of mercurial reagents with consequent inhibition of uptake of the enzyme into mitochondria but without effect on the catalytic activity. N-Ethylmaleimide does not react with this group. N-Ethylmaleimide reacts with a different sulfhydryl group with concomitant decrease in enzymic activity but with no effect on uptake of the enzyme into mitochondria. High levels of mercurial reagents similarly decrease enzymic activity. Unlike the effect on uptake into mitochondria, the inhibition by mercurial reagents of enzymic activity is not reversed by treatment with cysteine. The significance of these observations with respect to the mechanism of uptake of aspartate aminotransferase into mitochondria is discussed, and comparisons are made between the reactivities of sulfhydryl groups in rat liver aspartate aminotransferase and in the enzymes from other animals.  相似文献   

10.
The activities of leucine aminotransferase (BCAT) and 2-oxoisocaproate dehydrogenase (OADH) were measured in rat heart in vitro. The effect upon these enzyme activities of both ethanol and acetaldehyde, administered either acutely or chronically, was determined. Enzyme activities were not significantly altered by either acetaldehyde or ethanol when given chronically. Ethanol administered acutely to rats decreased OADH activity but BCAT was unaffected. Acetaldehyde administered acutely did not alter significantly BCAT activity but significantly increased OADH activity.  相似文献   

11.
Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase and other enzymes when incubated with L-cysteine or L-cystine. Cystine-dependent inactivation was caused by cystathionase and required pyridoxal 5'-phosphate, but a second protein was needed to reconstitute cysteine-dependent inactivation. A cytosolic protein was isolated that oxidized free cysteine and brought about inactivation of tyrosine aminotransferase when coincubated with cystathionase. Hematin also oxidized cysteine, which led to cysteine-dependent inactivation of tyrosine aminotransferase in the presence of cystathionase. The inactivation of tyrosine aminotransferase involved three steps: initial oxidation of cysteine to form cystine; desulfuration of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. Since dithiothreitol reactivated tyrosine aminotransferase, the sulfane probably inactivated the enzyme by oxidation of thiol groups. The present results do not indicate whether the cysteine oxidase activity is enzymatic nor do they prove which form of polysulfide inactivates tyrosine aminotransferase. Reduced glutathione greatly slowed the rates at which sulfane accumulated and at which tyrosine aminotransferase was inactivated. Incubation of DL-cystathionine with liver cytosols led to formation of cysteine, which was oxidized and cleaved to form persulfide, and caused inactivation of tyrosine aminotransferase. Thus, sulfane sulfur that is generated by an enzyme of the transulfuration pathway inactivates a transaminase by nonselective oxidation of enzyme-bound thiol groups.  相似文献   

12.
The effect of ethanol upon leucine oxidation by rat tissues in vitro is reported. The activities of branched chain amino acid aminotransferase and 2-oxo acid dehydrogenase were decreased by chronic administration of ethanol (20% v/v solution as drinking water for 35 d) in muscle and kidney but were increased, although not significantly, in liver. Acute administration of ethanol (8 g kg-1 body-weight 0.73) did not affect enzyme activities. Tissue NAD+:NADH ratios, calculated from lactate:pyruvate ratios, were significantly decreased in the liver and kidney of rats receiving ethanol acutely. These data are consistent with the view that ethanol decreases leucine oxidation by decreasing availability of NAD+ when given acutely and by decreasing enzyme activity when administered chronically.  相似文献   

13.
The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (td) of receptor transition at 57 degrees C, but a decrease in the enthalpy change (delta Hd) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol alpha-bungarotoxin also caused a decrease in delta Hd. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of alpha-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200-1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200-2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids.  相似文献   

14.
When rat hepatoma cells (HTC and R117-21B), treated with concanavalin A (conA) at 37 °C, were scraped from plastic culture dishes with a silicone-rubber policeman, the cell membranes were broken and the cytoplasm was released. This phenomenon was also observed in cells treated with conA at 4 °C, even though it took a longer time to show the same effect. The effect of 10 μg/ml of conA on the release of the cellular proteins reached a plateau when the treatment was carried out at 37 °C. Ninety percent of this effect was abolished by 10 mM of α-methyl-d-mannoside. The effect was completely nullified by 100 mM. At 4 °C, however, even 100 mM of this sugar could not abolish this effect. The apparent decrease in the cellular proteins with conA after scraping was observed not only in the logarithmic phase, but also in the stationary phase of cell growth. The breakdown of plasma membranes with conA eventually caused decrease in tyrosine aminotransferase activity, even though the lectin induced the enzyme activity in cultured cells.  相似文献   

15.
The K+-stimulated ATPase activity associated with the purified gastric microsomes from the pig gastric mucosa can be completely inactivated by treatment with 15% ethanol for 60 s at 37 °C but not at 25 °C. Sequential exposure of the microsomes to 15% ethanol at 25 and 37 °C caused the release of 2.9 and 4.3% of the total membrane phospholipids, respectively, consisting entirely of phosphatidyl choline and phosphatidyl ethanolamine. The ethanol-treated (37 °C) membrane had high basal (with Mg2+ as the only cation in the assay mixture) activity, which was further enhanced during reconstitution with phosphatidyl choline or phosphatidyl ethanolamine. The high basal activities could be reduced to the normal control level by assaying the enzyme in presence of the “activator protein,” partially purified from the soluble supernatant of the pig gastric cells. Phosphatidyl choline was somewhat more effective than phosphatidyl ethanolamine in the restoration of the activity of the ethanol-treated enzyme while phosphatidyl serine, phosphatidyl inositol, and sphingomyelin were without any effect. Synthetic phosphatidyl choline with various fatty acid substitutions were tested for their effectiveness in the restoration of the ethanol-inactivated enzyme. The distearoyl (18:0), dioleoyl (18:1), and dilinoleoyl (18:2) derivatives of phosphatidyl choline were almost equally effective while dipalmitoyl (16:0) phosphatidyl choline was somewhat less effective in the reconstitution process. Cholesterol appeared to interfere with phosphatidyl choline in the restoration of the activity of ethanol-treated enzyme. The fatty acid composition of phosphatidyl choline and phosphatidyl ethanolamine extracted by 15% ethanol at 37 °C was clearly different than those of the total microsome. Our data suggest that the phospholipids extracted by 15% ethanol at 37 °C are derived primarily from the immediate lipid environment of the enzyme and ATP together with Mg2+ and K+ help the partially delipidated enzyme to retain the appropriate conformation for the subsequent reconstitution. Furthermore, ethanol appears to either release or inactivate the membrane-associated activator protein, demonstrated to be essential for the K+-stimulated activity of the pig gastric ATPase.  相似文献   

16.
DL-alpha-Methyltryptophan (alphaMeTrp), a synthetic analogue of tryptophan, has been found to be a potent inducer of hepatic tyrosine aminotransferase activity in the adrenalectomized rat. alphaMeTrp is inactive in vitro. Unlike the action of other known inducers (tryptophan, hydrocortisone, adenosine cyclic 3:5-monophosphate, and glucagon), maximal stimulation of enzyme activity occurs only 16 to 30 hours after alphaMeTrp administration and the activity is still elevated at 96 hours. Only the L isomer of alphaMeTrp is active, and addition of a hydroxyl group to position 5 of the indole ring renders an inactive compound. The induction can be prevented by actinomycin D or cycloheximide but not galactosamine. Administration of alphaMeTrp together with hydrocortisone produced an additive stimulation of enzyme activity. alphaMeTrp given along with glucagon or adenosine cyclic 3:5-monophosphate caused a further but not additive increase in enzyme activity. Tryptophan given along with alphaMeTrp promoted no extra stimulation whatsoever. These data indicate that alphaMeTrp and tryptophan may act via a common pathway which in part requires RNA synthesis. Other enzymes, namely alanine and aspartate aminotransferase, ornithine aminotransferase, ornithine carbamoyltransferase, serine dehydratase, and histidine ammonialyase, were not affected by treatment of rats with alphaMeTrp.  相似文献   

17.
The induction of tyrosine aminotransferase in HTC cells by derivatives of adenosine 3′,5′-monophosphate is not potentiated by theopylline, a commonly used inhibitor of cyclic nucleotide phosphodiesterase. In fact, the addition of theophylline to HTC cell cultures produces a rapid decrease in the level of tyrosine aminotransferase activity. The magnitude of this decrease is dependent upon the added concentration of theopylline in both the presence and absence of enzyme inducers. Among several other purines and pyrimidines tested, caffeine and adenine most strongly resemble theophylline in affecting tyrosine aminotransferase activity. Theophylline inhibits growth and both protein and RNA synthesis in HTC cells, but the inhibition of protein synthesis cannot account completely for the effect on tyrosine aminotransferase. Theophylline also seems to increse the rate of degradation of the enzyme without affecting the degradation rate for general cellular protein. The mechanism of this apparently specific increase in degradation rate differs from both the normal degradation process for the enzyme and the enhanced degradation produced by nutritional depletion of the medium.  相似文献   

18.
Several possible control mechanisms for CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) activity in pea (Pisum sativum L.) stems were investigated. Indol-3-ylacetic acid (IAA) treatment of the pea stems decreased total cytidylyltransferase activity but did not affect its subcellular distribution. Oleate (2 mM) caused some stimulation of enzyme activity by release of activity from the microsomal fraction into the cytosol, but neither phosphatidylglycerol nor monoacyl phosphatidylethanolamine had an effect on activity or subcellular distribution. A decrease in soluble cytidylyltransferase protein concentrations was found in IAA-treated pea stems, but this was not sufficient to account for all of the decrease in cytidylyltransferase activity. A 50% inhibition of enzyme activity could be obtained with 0.2 mM-CMP, which indicated possible allosteric regulation. Similar inhibition was obtained with 1.5 mM-ATP, but other nucleotides had no effect. The cytidylyltransferase enzyme protein was not directly phosphorylated, and the inhibition with 1.5 mM-ATP occurred with the purified enzyme, thus excluding an obligatory mediation via a modulator protein. The results indicate that the cytosolic form of cytidylyltransferase is the most important in pea stem tissue and that the decrease in cytidylyltransferase activity in IAA-treated material appears to be brought about by several methods.  相似文献   

19.
I L Rouse  P H Pearce  I T Oliver 《Life sciences》1975,17(10):1571-1578
The relationship between the glucocorticoid binding capacity of rat liver cytosol and the activity of tyrosine aminotransferase has been studied in adrenalectomized male rats. Bilateral adrenalectomy of male rats caused an increase within 3 days in the level of specific dexamethasone binding of liver cytosol accompanied by a rapid decrease in tyrosine aminotransferase activity. Known inducers of tyrosine aminotransferase were administered in vivo to test their effect on dexamethasone binding capacity, in order to determine whether the induction was by an indirect mechanism involving an increase in glucocorticoid binding capacity. Insulin, adrenalin, glucagon, dibutyryl cyclic AMP and oestradiol caused a significant increase in the activity of the enzyme, with no change in the specific dexamethasone binding. Tetracosactrin, a synthetic analogue of ACTH, had no effect on either parameter. It was concluded that the induction of tyrosine aminotransferase by the compounds tested was not mediated by an increase in glucocorticoid receptor activity.  相似文献   

20.
Camptothecin inhibited the hydrocortisone but not the insulin induction of tyrosine aminotransferase activity in hepatoma cells in culture. However, camptothecin did not cause “superinduction” of tyrosine aminotransferase activity even though it reportedly inhibits messenger RNA synthesis. In hydrocortisone pre-induced cultures, camptothecin treatment caused a rapid decline in tyrosine aminotransferase activity suggesting it did not block degradation of the enzyme. A comparison of actinomycin D with camptothecin indicated that some of the effects of actinomycin D on tyrosine aminotransferase activity may not be mediated through inhibition of messenger RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号