首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both the role and the interacting partners of an RNA molecule can change depending on its tertiary structure. Consequently, it is important to be able to accurately predict the complete folding pathway of an RNA molecule. The hepatitis delta virus (HDV) ribozyme is a small catalytic RNA with the greatest number of folding intermediates making it the model of choice with which to address this problem. The tertiary structures of the known putative intermediates along the folding pathway of the HDV ribozyme were predicted using the Macromolecular Conformations Symbolic programming (MC-Sym) software. The structures obtained by this method received physical support from Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE). The analysis of these structures elucidated several features of the HDV ribozyme. In addition, this report represents an application for MC-Sym that permits progression one step further toward the computer prediction of an RNA molecule-folding pathway.  相似文献   

2.
We have obtained precatalytic (enzyme–substrate complex) and postcatalytic (enzyme–product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pKa that does not significantly perturb the ribozyme's atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme–substrate and enzyme–product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures.  相似文献   

3.
4.
Mathematical treatments have been developed to describe the action of alpha-amylases on amylose. The treatments are based on the unique properties of the exponential (or most-probable) distribution of molecular weights of the substrate, namely, that (a) the principal averages are invariant to chain-end attack if the product molecules are ignored, and (b) the ratio of the principal averages is invariant to random attack. The relations so developed allow published, qualitative data for the alpha-amylolysis of amylose to be interpreted in a quantitative manner. As a result, it appears that multiple attack is of little or no significance in the action patterns of alpha-amylases, with the exception of those derived from the pancreas.  相似文献   

5.
Chemical models for coupling oxidation to phosphorylation are summarized and examined both from the standpoint of organic reaction mechanisms and with respect to their relevance to mitochondria and chloroplasts. In order to accelerate the progress of our research in bioenergetics, it is suggested to focus at least as much attention on structural biochemistry as on phenomenological observations of energy-transducing membranes.Supported in part by Public Health Service Research Grant No. GM 19990 from the National Institute of General Medical Sciences and by National Science Foundation Research Grant No. PCM 74-24083 A01  相似文献   

6.
E.s.r. spectroscopy has been used in conjunction with an aqueous flow system to investigate both the metal-catalysed decomposition of hydrogen peroxide to OH. and the subsequent reactions of this radical with a variety of biomolecules. Particular emphasis is placed on the effects of pH and ligand on the FeII-H2O2 reaction and on the sites of attack by OH. in its reaction with pyranose and furanose sugars, sugar phosphates, nucleosides and nucleotides. Attention is focused on subsequent reactions (for example, of radicals formed by attack in the ribofuranose moiety of adenosine) which may be involved in radiation damage.  相似文献   

7.
Xin Y  Hamelberg D 《RNA (New York, N.Y.)》2010,16(12):2455-2463
The GlmS ribozyme is believed to exploit a general acid-base catalytic mechanism in the presence of glucosamine-6-phosphate (GlcN6P) to accelerate self-cleavage by approximately six orders of magnitude. The general acid and general base are not known, and the role of the GlcN6P cofactor is even less well understood. The amine group of GlcN6P has the ability to either accept or donate a proton and could therefore potentially act as an acid or a base. In order to decipher the role of GlcN6P in the self-cleavage of glmS, we have determined the preferred protonation state of the amine group in the wild-type and an inactive G40A mutant using molecular dynamics simulations and free energy calculations. Here we show that, upon binding of GlcN6P to wild-type glmS, the pK(a) of the amine moiety is altered by the active site environment, decreasing by about 2.2 from a solution pK(a) of about 8.2. On the other hand, we show that the pK(a) of the amine group slightly increases to about 8.4 upon binding to the G40A inactive mutant of glmS. These results suggest that GlcN6P acts as a general acid in the self-cleavage of glmS. Upon binding to glmS, GlcN6P can easily release a proton to the 5'-oxygen of G1 during self-cleavage of the backbone phosphodiester bond. However, in the G40A inactive mutant of glmS, the results suggest that the ability of GlcN6P to easily release its proton is diminished, in addition to the possible lack of G40 as an effective base.  相似文献   

8.
9.
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.  相似文献   

10.
The inability or the capacity to promote the phosphorylation of Na+/K(+)-transporting ATPase (Na/K-ATPase) from [32P]Pi is shown to differentiate between mechanistically digitalis-unlike and digitalis-like inhibitors of this enzyme known to be the receptor for all digitalis actions. A negative or positive response in the phosphorylation promotion assay introduced here appears thus to be suitable to diagnose the chemical species in the isolates of animal origin related to the putative endogenous digitalis. Various digitalis-congeneric C/D-cis steroids, progesterone-congeneric C/D-trans steroids and the Erythrophleum alkaloid cassaine promote the enzyme phosphorylation and show a similar pattern of discrimination between three Na/K-ATPase variants. Thus, their cyclopentanoperhydrophenanthrene or perhydrophenanthrene nuclei appear to serve as the minimal pharmacophoric lead structures for bimolecular recognition and to represent chemical models for the chemical nature of endogenous digitalis. Specifically, the hormonal C/D-trans steroids could provide the basic skeleton in endogenous digitalis biosynthesis.  相似文献   

11.
The chemical syntheses of RNA oligomers containing modifications on the 5′-carbon of the 5′-terminal nucleoside for crystallographic and mechanistic studies of the hairpin ribozyme are reported. Phosphoramidites 4 and 8 were prepared and used in solid phase syntheses of RNA oligomers containing the sequence 5′-N′UCCUCUCC, where N′ indicates either 5′-chloro-5′-deoxyguanosine or 5′-amino-5′-deoxyguanosine, respectively. A ribozyme ligation assay with the 5′-chloro- and 5′-amino-modified RNA oligomers demonstrated their inhibition of the hairpin-catalyzed RNA–RNA ligation reaction.  相似文献   

12.
Bethoxazin is a new broad spectrum industrial microbicide with applications in material and coating preservation. However, little is known of its reactivity profile and mechanism of action. In this study, we examined the reactivity of bethoxazin toward biologically important nucleophilic groups using UV-vis spectroscopy and LC-MS/MS techniques and found the molecule to be highly electrophilic. Bethoxazin reacted with molecules containing free sulfhydryl groups such as GSH and human serum albumin to form covalent adducts that were detectable by MS, but did not react with amino, carboxylic, phenolic, amino oxo, alcoholic, and phosphate functional groups. Bethoxazin potently inhibited the catalytic activity of yeast DNA topoisomerase II and the growth of yeast BY4742 cells at low micromolar concentrations. However, the reduced form of bethoxazin and GSH-treated bethoxazin were both inactive in these assays. The experimentally determined relative reactivity of bethoxazin and its reduced form analog correlated with their biological activities as well as their quantum-mechanically calculated electrophilicity properties. Taken together, the results suggest that bethoxazin may exert its microbicidal action by reacting with sensitive endogenous sulfhydryl biomolecules of microbial cells. Consistent with this view, the inhibitory activity of bethoxazin on topoisomerase II may be due to its ability to react with critical free cysteine sulfhydryl groups on the enzyme. Our studies have provided for the first time a better understanding of the reactivity of bethoxazin, as well as some insights into the mechanism by which the compound exerts its microbicidal action.  相似文献   

13.
Eckstein F  Bramlage B 《Biopolymers》1999,52(3):147-154
The hammerhead ribozyme is an intriguing RNA molecule with the ability to serve as a catalyst to cleave sequence-specifically RNA molecules in an intermolecular reaction. Preferentially Mg(2+) is required for optimal activity by inducing the catalytically competent conformation and by possibly acting as an acid-base catalyst. Even though the three-dimensional structure has been elucidated details of the structure-function relationship and of the mechanism remain unanswered. The hammerhead ribozyme has stimulated the concept of the sequence-specific cleavage of mRNAs intracellularly and thus to inhibit gene expression by preventing translation. This represents an area of considerable interest as it has the potential for the development of drugs.  相似文献   

14.
15.
Three models for the secondary structure of the hepatitis delta virus (HDV) antigenomic self-cleaving RNA element were tested by site-directed mutagenesis. Two models in which bases 5' to the cleavage site are paired with sequence at the 3' end of the element were both inconsistent with the data from the mutagenesis. Specifically, mutations in the 3' sequence which decrease self-cleavage activity could not be compensated by base changes in the 5' sequence as predicted by these models. The evidence was consistent with a third model in which the 3' end pairs with a portion of a loop within the ribozyme sequence to generate a pseudoknot structure. This same pairing was also required to generate higher rates of cleavage in trans with a 15-mer ribozyme, thus ruling out a proposed hammerhead-like 'axehead' model for the HDV ribozyme.  相似文献   

16.
The hairpin ribozyme   总被引:1,自引:0,他引:1  
The hairpin ribozyme is a naturally occurring RNA that catalyzes sequence-specific cleavage and ligation of RNA. It has been the subject of extensive biochemical and structural studies, perhaps the most detailed for any catalytic RNA to date. Comparison of the structures of its constituent domains free and fully assembled demonstrates that the RNA undergoes extensive structural rearrangement. This rearrangement results in a distortion of the substrate RNA that primes it for cleavage. This ribozyme is known to achieve catalysis employing exclusively RNA functional groups. Metal ions or other catalytic cofactors are not used. Current experimental evidence points to a combination of at least four mechanistic strategies by this RNA: (1) precise substrate orientation, (2) preferential transition state binding, (3) electrostatic catalysis, and (4) general acid base catalysis.  相似文献   

17.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

18.
19.
In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Br?nsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Br?nsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst.  相似文献   

20.
Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号