首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of the enzymes of ketogenesis in isolated rat liver mitochondria has been investigated. Mitochondrial subfractions were isolated after disruption of this subcellular organelle by (a) hypotonic lysis in water, which permitted the ultracentrifugal separation of the soluble and membranous compartments of the mitochondrion, or by (b) a procedure involving swelling, contraction, and ultrasonic treatment, which permitted the isolation from discontinuous sucrose gradients of subfractions rich in intermembrane space protein, outer membrane, and inner membrane-matrix particles. Two membrane subfractions were invariably present as distinct bands at the lower interface of the discontinuous gradient. The upper of these two bands was found to be a highly purified preparation of outer mitochondrial membrane. Subfractions rich in matrix and in inner membrane were isolated from inner membrane-matrix particles after hypotonic treatment. The content of the various mitochondrial compartments in all subfractions was assessed from their enzymic and electron microscopic characteristics. The ketogenic activity of each subfraction was determined by measuring its capacity to form ketone bodies from acetyl CoA. The activity of this process was markedly enhanced by dithiothreitol. These measurements of ketone body formation, together with assays of individual enzymes of the ketogenic pathway, show that thiolase, HMGCoA synthase, and HMGCoA cleavage enzyme are localized in the matrix of the inner membrane-matrix particles. The rates of ketone body formation indicate that the HMGCoA synthase is the rate-limiting enzyme of the pathway in subfractions of high matrix content. Studies with sodium chloride indicate that a large portion of the HMGCoA synthase, which remains present in membrane subfractions derived from water-treated mitochondria, is bound by ionic interaction to component(s) of the membrane.  相似文献   

2.
Summary The innervation of the swimbladder in four different teleost species has been studied by the use of immunohistochemical methods. The teleosts examined belong to two different groups regarding their swimbladder morphology: physoclists (the cod, Gadus morhua and the goldsinny wrasse, Ctenolabrus rupestris) and physostomes (the eel, Anguilla anguilla and the rainbow trout, Salmo gairdneri). Vasoactive intestinal polypeptide-like immunoreactivity was demonstrated in nerves of the swimbladder walls of all four species, and in the gas glands of the cod and the goldsinny wrasse. Substance P-like immunoreactivity was shown in swimbladders of the cod, eel and rainbow trout but not the goldsinny wrasse. Immunoreactivity to met-enkephalin antiserum was revealed in the swimbladder walls of the eel and the goldsinny wrasse, while neurotensin-like immunoreactivity was present in the goldsinny wrasse and rainbow trout swimbladders. Neurotensin-like immunoreactivity was also seen in the gas gland of the goldsinny wrasse. 5-Hydroxytryptamine immunoreactivity was found in endocrine cells in the pneumatic duct of the eel and in the swimbladder walls of the goldsinny wrasse and the rainbow trout. In conclusion, all teleosts examined showed a very close resemblance in the peptidergic/tryptaminergic innervation of the swimbladder to that of the gut, inasmuch as the immunoreactivity present in the swimbladders always occurred in the gut of the same species.  相似文献   

3.
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.  相似文献   

4.
The transport of D-glucose into rainbow trout (Oncorhynchus mykiss) and river lamprey (Lampetra fluviatilis) hepatocytes, as well as into rainbow trout hepatoblastoma cell line RTH-149 was studied using tracer methods. The half-time for D-glucose equilibration was 15 s for rainbow trout. The half-times for the non-metabolizable D-glucose analog, 3-O-methyl-D-glucose equilibration were 8 s, 37 s and 38 s for rainbow trout, lamprey and RTH-149 cells, respectively. The 3-O-methyl-D-glucose was taken up by rainbow trout hepatocytes by facilitated diffusion in addition to simple diffusion. The uptake showed saturation kinetics with the K(m) of 37 mM and V(max) of 62 mmol kg(-1) cells min(-1). The uptake was sensitive to phloretin and cytochalasin B, but not affected by ouabain. The 3-O-methyl-D-glucose uptake by lamprey hepatocytes and RTH-149 cells showed no indication of saturation up to 160 mM, and was not affected by phloretin, cytochalasin B or ouabain, which suggests the mode of transport to be by passive diffusion. However, immunocytochemical stainings revealed the existence of mammalian type GLUT1 and GLUT2 transporters in all cells studied. The lack of a functioning carrier-mediated glucose uptake in lamprey hepatocytes might be due to its physiological state (prespawning starvation). The minor 3-O-methyl-D-glucose uptake into RTH-149 cells compared to freshly isolated rainbow trout hepatocytes might reflect low metabolic activity of the cell lines. Under the conditions applied the RTH-149 cell line is no suitable in vitro model for glucose transport in fish cells.  相似文献   

5.
Agarose-gel electrophoresis of polyadenylated RNA from livers of oestrogen-treated male rainbow trout revealed a major high-Mr species (7200 nucleotides), which is absent from the polyadenylated RNA isolated from hormonally unstimulated male trout liver. Translation in vitro of the RNA from oestrogen-treated males in a mRNA-dependent rabbit reticulocyte lysate produced a protein (Mr 200 000) that could be immunoprecipitated with antibodies against trout serum vitellogenin, but no immunoprecipitable protein was synthesized with RNA from control animals. DNA complementary to the RNA from oestrogen-stimulated and control male trout liver was synthesized and back-hybridized, with R0t1/2 of 3.8 X 10(-2) and 1 X 10(-1) mol X litre-1 X s for RNA from hormone-treated and control animals respectively. The 9% increase in the abundant mRNA after oestrogen stimulation is due to the induction of vitellogenin mRNA.  相似文献   

6.
Glucokinase (GCK) is a key enzyme involved in hepatic glucose metabolism as well as in glucose homeostasis regulation. In mammals, GCK is regulated in vivo by a regulatory protein (GCKR) through a nucleus-to-cytoplasm translocation enhanced by fructose 1-phosphate and counteracted by fructose 6-phosphate. There were no previous evidences in literature regarding the presence of GCKR in livers of other vertebrates like fish and bird. Accordingly, in the present study we assessed GCKR presence in chicken, trout, carp, and goldfish hepatic homogenates. The results obtained demonstrate for the first time the presence of a GCKR-like protein in the liver of those species, with molecular weight (68 kDa) and biochemical properties similar to those described in mammals. Several of the biochemical properties of rainbow trout GCKR-like protein were closer to the mammalian model whereas those of chicken protein were specific. We also compared the presence and properties of GCKR-like protein in livers of different teleost species that exhibit different tolerances to glucose such as rainbow trout (intolerant) and goldfish and common carp (tolerant). The results showed that the most powerful GCKR-like protein was found in the most intolerant species, whereas the inhibition exerted by GCKR-like protein in tolerant species was closer to chicken than to rat. Furthermore, the response of GCKR-like protein in liver of rainbow trout fed with a diet rich in carbohydrates was compared with the rat model under extreme glycemic conditions. We found that despite trout GCKR-like protein was less active and expressed than in rat, the response against glycemic changes took place in the same direction, and the ratio GCKR-like protein:GCK was affected in a similar way.  相似文献   

7.
Cholesterogenesis pathway during pre- and postnatal development was studied in isolated rat hepatocytes. No modified activity of cytosol acetoacetyl coenzyme A (CoA), thiolase, or 3-hydroxy-3-methylglutaryl CoA (HMGCoA) synthase was detectable at the different stages examined. Minimal levels of 1(14)C-acetate incorporation into cholesterol and HMGCoA reductase activity were present at 16 days of fetal development in newborn and suckling rats, whereas both parameters increased rapidly before birth. The pattern of NaF nonsuppressible reductase activity showed a different activation state of the enzyme, suggesting the appearance of a modulation state, probably related to the development of some short-term regulatory mechanisms.  相似文献   

8.
1. When rainbow trout were exposed to cadmium by intraperitoneal injection, there was a rapid (within 3hr) and significant (approx. 63%) loss of the metal from the whole bodies of the fish.2. Of the metal retained in the bodies of the fish (approx. 37% of the injected dose), more than 98% was accounted for collectively among the liver, kidney and gills.3. Subsequent maintenance of the rainbow trout in fresh water for up to 98 days post-metal administration, indicated that there was no further loss of the cadmium accumulated in the organs studied and that the distribution of the metal among the liver, kidney and gills remained unchanged over that period.4. During this 98-day period of maintenance of the fish, tissue concentrations of metallothionein-specific mRNA and metallothionein protein were quantified using riboprobe and ELISA systems respectively. Metallothionein-specific mRNA concentrations increased rapidly (within 24 hr) before falling back to levels similar to, or slightly greater than, those found in control animals. The concentration of metallothionein protein also increased significantly (within 3 days) then remained elevated thereafter.5. Throughout the experimental period, the concentrations of zinc and copper were also monitored in the liver, kidney and gills of the rainbow trout. The concentrations of each ion differed between each of the organs but did not change during the experiment.6. The induction of metallothionein gene expression by cadmium in the liver, kidney and gill of rainbow trout and the subsequent sequestration of the toxic metal is discussed with regard to the relative levels of these other essential metal ions.  相似文献   

9.
1. [1-14C]linolenic acid was injected into the rainbow trout, Salmo gairdnerii, ayu, Plecoglossus altivelis, eel, Anguilla japonica, red sea bream, Chrysophrys major, rockfish, Sebastiscus marmoratus, globefish, Fugu rubripes rubripes and prawn, Penaeus japonicus (molting stage D"1-D2), and the bioconversion of linolenic acid (18:3 omega 3) to highly unsaturated fatty acids such as eicosapentaenoic (20:5 omega 3) and docosahexaenoic (22:6 omega 3) acids was investigated. 2. Linolenic acid was converted to 20:5 omega 3 and 22:6 omega 3 intensively in the rainbow trout, moderately in the ayu, eel and prawn, but slightly in the red sea bream, rockfish and globefish. 3. These results were discussed in relation to the essential fatty acid requirements of the aquatic animals.  相似文献   

10.
Nagler JJ  Cavileer T  Sullivan J  Cyr DG  Rexroad C 《Gene》2007,392(1-2):164-173
Estrogen hormones interact with cellular ERs to exert their biological effects in vertebrate animals. Similar to other animals, fishes have two distinct ER subtypes, ERalpha (NR3A1) and ERbeta (NR3A2). The ERbeta subtype is found as two different isoforms in several fish species because of a gene duplication event. Although predicted, two different isoforms of ERalpha have not been demonstrated in any fish species. In the rainbow trout (Oncorhynchus mykiss), the only ER described is an isoform of the ERalpha subtype (i.e. ERalpha1, NR3A1a). The purpose of this study was to determine whether the gene for the other ERalpha isoform, ERalpha2 (i.e., NR3A1b), exists in the rainbow trout. A RT-PCR and cloning strategy, followed by screening a rainbow trout BAC library yielded a unique DNA sequence coding for 558 amino acids. The deduced amino acid sequence had a 75.4% overall similarity to ERalpha1. Both the rainbow trout ERbeta subtypes, ERbeta1 [NR3A2a] and ERbeta2, [NR3A2b] which were previously unknown in this species, were also sequenced as part of this study, and the amino acid sequences were found to be very different from the ERalphas (approximately 40% similarity). ERbeta1 and ERbeta2 had 594 and 604 amino acids, respectively, and had 57.6% sequence similarity when compared to one another. This information provides what we expect to be the first complete nuclear ER gene family in a fish. A comprehensive phylogenetic analysis with all other known fish ER gene sequences was undertaken to understand the evolution of fish ERs. The results show a single ERalpha subtype clade, with the closest relative to rainbow trout ERalpha2 being rainbow trout ERalpha1, suggesting a recent, unique duplication event to create these two isoforms. For the ERbeta subtype there are two distinct subclades, one represented by the ERbeta1 isoform and the other by the ERbeta2 isoform. The rainbow trout ERbeta1 and ERbeta2 are not closely associated with each other, but instead fall into their respective ERbeta subclades with other known fish species. Real-time RT-PCR was used to measure the mRNA levels of all four ER isoforms (ERalpha1, ERalpha2, ERbeta1, and ERbeta2) in stomach, spleen, heart, brain, pituitary, muscle, anterior kidney, posterior kidney, liver, gill, testis and ovary samples from rainbow trout. The mRNAs for each of the four ERs were detected in every tissue examined. The liver tended to have the highest ER mRNA levels along with the testes, while the lowest levels were generally found in the stomach or heart. The nuclear ERs have a significant and ubiquitous distribution in the rainbow trout providing the potential for complex interactions that involve the functioning of many organ systems.  相似文献   

11.
Developmental Aspects of Detoxifying Enzymes in Fish (Salmo Iridaeus)   总被引:1,自引:0,他引:1  
The activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione transferase and glyoxalase I have been studied during the embryologic development of rainbow trout (Salmo iridaeus) and in several other trout tissues to investigate the protective development metabolism.

A gradual increase of superoxide dismutase, catalase, glutathione reductase, glyoxalase I and glutathione transferase activities was noted throughout embryo development.

In all trout tissues investigated glutathione peroxidase was found to be extremely low compared to catalase activity. The highest activity of superoxide dismutase, glyoxalase I and glutathione reductase was found in liver followed by kidney.

No change in the number of GST subunits was noted with the transition from the embryonic to the adult stages of life according to the SDS/PAGE and HPLC analyses performed on the GSH-affinity purified fractions.  相似文献   

12.
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.  相似文献   

13.
The levels of glycogen and glucose, as well as of the activities of several key enzymes of glycogenolysis, glycolysis, gluconeogenesis and the pentose phosphate shunt were assessed in livers of small (97 g) and large (166 g) rainbow trout Oncorhynchus mykiss during gradual transfer to sea water (salinities of 0, 9, 18 and 28%). Plasma glucose and protein levels were also evaluated. Liver carbohydrate metabolism changed during gradual adaptation of rainbow trout to sea water. Glucose increased with salinity in livers of both sizes of animals, as did glycogenolysis and gluconeogenesis, but this latter only in large animals, and glycolytic rates in small animals. The different responses in metabolic parameters between sizes of animals may reflect a higher stress of the small animals and/or a better adaptation of large animals to increased salinities, in a way similar to that previously suggested by other authors after evaluation of non-metabolic parameters. The changes observed at 28% can also be the result of reduced food consumption.  相似文献   

14.
1. The hypothesis is advanced that it would be logical for a tissue (liver) to evolve as a gluconeogenic organ in order to recover the lactate produced as a result of rapid and sustained contraction of skeletal muscle. 2. Lactate was present in skeletal muscle of all animals examined and increased following electrical stimulation. It was also present in the blood. 3. Gluconeogenesis from lactate occurred in liver slices of all animals excepting amphibia. However, livers of these animals also contained much glycogen and are probably gluconeogenic. 4. Phosphoenolpyruvate carboxykinase was present in all animals investigated; pyruvate carboxylase was present in all animals excepting the toad.  相似文献   

15.
A total of 317 Vibrio anguillarum strains were isolated from water, sediment, and diseased as well as healthy rainbow trout at a Danish mariculture farm and from feral fish caught close to the farm. All strains were examined serologically. Ten sera permitted determination of the O group in 66.7% of the strains from diseased rainbow trout. Furthermore, the O group could be determined in 45.1 to 65.4% of the strains from mucus, gills, and intestinal contents of healthy rainbow trout, while only 22.2 to 28.8% of the isolates from water, sediment, and gills or mucus of feral fish were groupable. Serogroup O1 and to some extent O2 appeared to be associated with trout. Strains from these serogroups were selected for analyses of hemagglutinating activity and surface hydrophobicity. Serogroup O1 comprised hemagglutinating as well as nonhemagglutinating strains; from cases of vibriosis, all O1 strains were nonhemagglutinating. The strains belonging to serogroup O2 were generally hemagglutinating. Examinations of surface hydrophobicity by salt aggregation and hydrophobic interaction chromatography suggested that the O1 strains were more hydrophobic than the O2 strains. In pathogenicity tests, O1 strains isolated from gills and mucus of healthy rainbow trout killed all trout in the test groups. A strain from the intestinal contents of healthy rainbow trout did not produce significant mortality. This strain could, however, be frequently reisolated from the pronephros of fish in the test group concerned. After challenge with strains from eel mucus and seawater, mortality was not produced, and furthermore, these strains could not be reisolated from the pronephros.  相似文献   

16.
A total of 317 Vibrio anguillarum strains were isolated from water, sediment, and diseased as well as healthy rainbow trout at a Danish mariculture farm and from feral fish caught close to the farm. All strains were examined serologically. Ten sera permitted determination of the O group in 66.7% of the strains from diseased rainbow trout. Furthermore, the O group could be determined in 45.1 to 65.4% of the strains from mucus, gills, and intestinal contents of healthy rainbow trout, while only 22.2 to 28.8% of the isolates from water, sediment, and gills or mucus of feral fish were groupable. Serogroup O1 and to some extent O2 appeared to be associated with trout. Strains from these serogroups were selected for analyses of hemagglutinating activity and surface hydrophobicity. Serogroup O1 comprised hemagglutinating as well as nonhemagglutinating strains; from cases of vibriosis, all O1 strains were nonhemagglutinating. The strains belonging to serogroup O2 were generally hemagglutinating. Examinations of surface hydrophobicity by salt aggregation and hydrophobic interaction chromatography suggested that the O1 strains were more hydrophobic than the O2 strains. In pathogenicity tests, O1 strains isolated from gills and mucus of healthy rainbow trout killed all trout in the test groups. A strain from the intestinal contents of healthy rainbow trout did not produce significant mortality. This strain could, however, be frequently reisolated from the pronephros of fish in the test group concerned. After challenge with strains from eel mucus and seawater, mortality was not produced, and furthermore, these strains could not be reisolated from the pronephros.  相似文献   

17.
The virulence of 5 European and 1 North American isolate of infectious haematopoietic necrosis virus (IHNV) was compared by infecting female sibling rainbow trout ('Isle of Man' strain) of different weights and ages (2, 20 and 50 g). The fish were exposed to 10(4) TCID50 IHNV per ml of water by immersion, and the mortality was recorded for 28 d. Two new IHNV isolates from Germany were included in the investigation. One was isolated from European eels kept at 23 degrees C (+/- 2 degrees C) and the other was not detectable by immunofluorescence with commercially available monoclonal antibodies recognising the viral G protein. The results showed that IHNV isolates of high or low virulence persisted in rainbow trout of all ages/weights for 28 d, with the exception of fish over 15 g in the eel IHNV (DF [diagnostic fish] 13/98)-infected groups from which the virus could not be reisolated on Day 28. The smallest fish were most susceptible to an infection with any of the IHNV isolates. The lowest cumulative mortality (18%) was observed in fingerlings infected with the North American isolate HAG (obtained from Hagerman Valley), and the highest mortality (100%) in DF 04/99 infected fish. The DF 04/99 and O-13/95 viruses caused mortality in fish independent of their weight or age. The isolates FR-32/87 and I-4008 were virulent in fish up to a weight of 20 g and caused no mortality in larger fish. In the IHNV HAG- and DF 13/98 (eel)-infected rainbow trout, no signs of disease were observed in fish weighing between 15 and 50 g. An age/weight related susceptibility of rainbow trout was demonstrated under the defined conditions for all IHNV isolates tested.  相似文献   

18.
Elastase-like enzymes were detected as zymogens in all of the pancreatic extracts from the gummy shark, bullhead shark, angel shark, smooth hammerhead, bestel, rainbow trout, carp, eel, Japanese mackerel, yellowtail, sea bass, parrotfish, bullfrog, chicken, bluewhite dolphin, hog, rat, cat, and dog. The distribution of pancreatic elastase and metalloproteinase was examined on the basis of the effect of specific inhibitors on elastase like-activity in each extract. The results indicate that pancreatic elastases are present in all the species examined and pancreatic metalloproteinases are present only in the teleost fishes.  相似文献   

19.
The effect of glucagon and insulin on the incorporation of 1-14C-acetate into cholesterol and fatty acids and on the enzymes involved in the first steps of cholesterol synthesis (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, 3-hydroxy-3-methyl-glutaryl-coenzyme A synthase, and acetoacetyl-coenzyme A thiolase) was investigated. Isolated rat hepatocytes at different stages of fetal and postnatal development were employed. Data obtained show the appearance of hormonal control on the 18th day of fetal life, indicating the same pattern, as regards acetate incorporation and HMGCoA reductase prepared and assayed in the presence of NaF. On the contrary, HMGCoA reductase, prepared without NaF, HMGCoA synthase, and acetoacetyl CoA thiolase, does not appear to respond to hormonal stimulation. In the perinatal period, the hormonal effect is no longer detectable, probably because of a hormone resistance of this metabolic pathway.  相似文献   

20.
Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly) was equally observed, while lipolytic gene expression (cpt1a and cpt1b) decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic phenotype of rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号