首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10–20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1–2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0 · 108 M?1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

2.
Paramecia are an excellent model system for studying the mechanisms involved in sensory transductions and intracellular Ca2+ regulation. These cells have two functionally distinct plasma membrane domains, body and cilia. The body plasma membrane is responsible for transduction of sensory stimuli into receptor potentials and the ciliary membrane is required for Ca2+ action potentials. Although ciliary membrane vesicles (cmv) have been purified and well characterized, body plasma membranes have not. We have generated body plasma membrane vesicles (bmv) by homogenization of deciliated cells and purified them from the microsome fraction by a two-phase aqueous polymer separation. The major criteria for purity of the bmv fraction are: (i) It is enriched 15-fold for a known plasma membrane marker (immobilization antigen) while the marker activities for other membranes were all decreased. The protein banding pattern of bmv is generally similar to cmv on SDS-PAGE. (ii) It contains a vanadate-sensitive Ca2+-ATPase activity that has been suggested to be a plasma membrane Ca2+ pump. The specific activity of this bmv Ca2+-ATPase is increased 4-fold over that of the homogenate. (iii) The phospholipid, fatty acid, and sterol composition of the bmv fraction are indicative of plasma membranes because they are qualitatively similar to cmv. The bmv also contains a membrane-bound NADPH-dependent cytochrome c reductase activity, suggesting that it may play a role in body plasma membrane function. This purified bmv preparation is useful for studying the role of the body plasma membrane in Ca2+ regulation, sensory transduction, protein and lipid trafficking, and plasma membrane fusion events.  相似文献   

3.
A small amount (0.5 mg) of isolated membrane fragments of rabbit cardiac muscle was dried on Corning cover glasses at 4°C under reduced pressure. The membrane fragments so dried did not come off the cover glasses during incubation in reaction mixtures and subsequent washing. The Mg2+- and Na+-K+-activated adenosine triphosphatase (ATPase) activities of dried membrane fragments were similar and comparable to those of original membrane fragments before drying. Furthermore, the specific binding of ouabain to phosphorylated intermediate forms of Na+-K+-activated ATPase and the ATP-dependent 24Na binding to the membrane were found to occur in dried membrane fragments. Retention of these vital characteristics of cell membrane, the requirement of small quantities of membrane material, and an advantage of instantaneous removal of membrane fragments from reaction mixtures make this preparation uniquely suited for certain kinds of investigations on the cellular membrane.  相似文献   

4.
The effect of di- and trivalent cations on the membrane potential of the Ehrlich ascites tumor cell has been investigated using micro-electrode techniques. In solutions free of multivalent cations the average membrane potential for 46 cells was 8.3 ± 0.5 mv (SE). However, the potentials were not stable and decayed with a half-time of about six seconds. Addition of Ca++ decreased the rate of decay and concomitantly increased the membrane potential. The magnitude of these effects was a function of the Ca++ concentration. At the optimum concentration (2 mM ), the half-time of decay was increased to 12 seconds and the membrane potential was raised to 17.8 ± 1.7 mv (SE). The related alkaline-earth cations, Sr++, Ba++ and Mg++ had similar effects on both the stability and magnitude of the membrane potential. The effect of La+++, which was qualitatively similar to that of the divalent cations, was also concentration dependent. However, 100-fold lower concentrations were adequate to achieve comparable effects. Moreover, membrane potentials were stable for up to ten minutes in La+++-containing solutions. Variations in intracellular Cl? content induced by temperature changes were paralleled by changes in membrane potentials. However, the potentials were not those expected for a simple Cl? electrode.  相似文献   

5.
The properties and kinetics of ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activities of plasma membrane H+-ATPase from the two reed ecot ypes, swamp reed (SR) and dune reed (DR), were investigated. The pH optimum of the plasma membrane H+-ATPase in both reed ecotypes was similar but the sensitivity of the enzyme to the reaction medium pH seemed to be higher in DR than that in SR. Compared to SR, the DR exhibited a higher Vmax value for ATP hydrolysis whereas the Km value was almost similar in both reed ecotypes. The PNPP hydrolysis of the plasma membrane H+-ATPase was also studied in both reed ecotypes at increasing PNPP concentrations. Km and Vmax for PNPP hydrolysis showed great differences in the two reed ecotypes and in DR the Km and Vmax values were 2- and 10-fold, respectively, higher than those in SR. The ATP hydrolysis activity of the plasma membrane was markedly inhibited by hydroxylamine in both reed ecotypes, and the percentage inhibition of ATP hydrolysis rate seemed higher in DR than that in SR. In addition, the structure or property of the C-terminal end of the plasma membrane H+-ATPase were also different in the two reed ecotypes. These data suggest that different isoforms of the plasma membrane H+-ATPase might be developed and involved in the adaptation of the plant to the long-term drought-prone habitat.This research was supported by Natural Science Foundation of China (No. 30270238 & No. 30470274) and the National Key Basic Research Special Funds of China (G1999011705).  相似文献   

6.
Plasma membranes were isolated from lactating bovine mammary gland. Two crude membrane fractions; medium/d 1.033 (light membrane) and 1.033/1.053 interfaces (heavy membrane), were obtained by Ficoll density gradient centrifugation of osmotically washed microsomal fraction. Two crude membranes were further purified separately by sucrose density gradient centrifugation. Both light and heavy membranes banded at a sucrose density of 1.14. The purified membranes appeared as heterogeneous smooth membrane vesicles on electron microscopy. The contaminating suborganelles were not detected. The yield of the purified membranes relative to the homogenate was 1.2%. The degree of purity of the membranes was shown by a great increase in the specific activity of 5′-nucleotidase over the homogenate of 20-fold for light membrane and of 16-fold for heavy membrane. The relative activities of Mg2+-ATPase, (Na+ + K+)-ATPase, γ-glutamyl transpeptidase, phosphodiesterase I, akaline phosphatase and xanthine oxidase were also high (12–18-times) and nearly 20% of these enzymes was recovered. The activity of marker enzyme for mitochondria, endoplasmic reticulum and Golgi apparatus was very low, while that of acid phosphatase for lysosome was relatively high (5-times). DNA and RNA contents were very low. The major polypeptides rich in other suborganelles were not detected profoundly in the membrane fraction and the polypeptide compositions in both light and heavy membranes were similar upon SDS-polyacrylamide gel electrophoresis.  相似文献   

7.
After capacitation of guinea pig spermatozoa in vitro, the plasma membrane was mechanically separated from the spermatozoa in the presence or absence of HgCl2 and subsequently isolated by density gradient centrifugation. Examination of the spermatozoa by electron microscopy after homogenization in the presence of HgCl2 revealed that plasma membrane was removed only from the acrosomal region and remained predominately intact posterior to the equatorial segment of the sperm head, as well as the midpiece and tail. In comparison, spermatozoa homogenized under similar buffer conditions but in the absence of HgCl2 lose the large apical segment of the acrosome and the plasma membrane is removed essentially from the entire cell. If spermatozoa were homogenized in the absence of Hg2+, analysis of plasma membrane phospholipid composition revealed a complete loss of lysophosphatidylcholine (LPC) from the plasma membrane after incubation of spermatozoa in minimal capacitating medium (MCM-PL) for 2 hours. Under these culture conditions the addition of Ca2+ (5 mM) to the capacitated spermatozoa induced approximately 78 ± 5% (n = 3) of the motile spermatozoa to undergo acrosome reactions while still maintaining sperm motility (80 ± 5%) (n = 3). If the spermatozoa were homogenized in the presence of Hg2+, a time course study revealed that plasma membrane LPC loss occurred between 60 and 90 minutes of incubation. This complete loss of LPC was evident when approximately half of the capacitated spermatozoa had undergone acrosome reactions. Incubation of the spermatozoa with the metabolic and acrosome reaction inhibitor, 2-deoxyglucose (10 mM) for 2 hours, maintained the plasma membrane phospholipid composition similar to that in the noncapacitated state. These data provide evidence that changes in the plasma membrane phospholipid composition may be associated with guinea pig sperm capacitation.  相似文献   

8.
The interaction between the cell-penetrating peptide (CPP) penetratin and different membrane mimetic environments has been investigated by two different NMR methods: 15N spin relaxation and translational diffusion. Diffusion coefficients were measured for penetratin in neutral and in negatively charged bicelles of different size, in sodium dodecyl sulfate micelles (SDS), and in aqueous solution. The diffusion coefficients were used to estimate the amount of free and bicelle/micelle-bound penetratin and the results revealed that penetratin binds almost fully to all studied membrane mimetics. 15N relaxation data for three sites in penetratin were interpreted with the model-free approach to obtain overall and local dynamics. Overall correlation times for penetratin were in agreement with findings for other peptides of similar size in the same solvents. Large differences in order parameters were observed for penetratin in the different membrane mimetics. Negatively charged surfaces were seen to restrict motional flexibility, while a more neutral membrane mimetic did not. This indicates that although the peptide binds to both bicelles and SDS micelles, the interaction between penetratin and the various membrane mimetics is different.  相似文献   

9.
Highly purified plasma membrane vesicles were obtained from roots and leaves of 7-day-old light-grown barley (Hordeum vulgare L. cv Kristina) seedlings by partitioning of crude microsomal fractions in a dextran-polyethylene glycol two-phase system. Sodium dodecylsulfate polyacrylamide gel electrophoresis showed the polypeptide composition of plasma membranes from the two organs to be qualitatively similar, but with different relative amounts of some of the polypeptides. Between 80 and 100% of the K+,Mg2+-ATPase activity was latent indicating that the vesicles were sealed and right side-out. The isoelectric points of the outer surface of root and leaf plasma membranes as determined by cross-partitioning were similar and quite acidic—about pH 3.6. In contrast, the net negative surface charge density at pH 7.0 as measured by 9-aminoacridine fluorescence differed significantly, being −29 mC·m−2 for the leaf plasma membrane and only −19 mC·m−2 for the root plasma membrane. As isolated, both types of plasma membrane vesicles had Ca2+ and Mg2+ bound to the outer surface as shown by the combined use of chelators and 9-aminoacridine fluorescence; however, the leaf plasma membrane had a relatively higher proportion of Ca2+ bound (0.57) than did the root plasma membrane (0.45). This difference probably reflects differences in the in vivo conditions as no chelator was present during the isolation procedure. Also Ni2+ could bind to the root vesicles as indicated by the effect of Ni2+ on 9-aminoacridine fluorescence, and by the binding of 63Ni2+ (44 nanomoles bound per milligram protein) at 100 micromolar NiCl2.  相似文献   

10.
A new type of microfluorometer was applied to assess photosynthesis at the single-cell level by chlorophyll fluorescence using the saturation pulse method. A microscopy–pulse amplitude modulation (PAM) chlorophyll fluorometer was combined with a Zeiss Axiovert 25 inverted epifluorescence microscope for high-resolution measurements on single mesophyll and guard cells and the respective protoplasts. Available information includes effective quantum yield of photosystem II, relative electron transport rate and energization of the thylakoid membrane due to the transthylakoidal proton gradient. Dark–light induction curves of guard cell (GCPs) and mesophyll cell protoplasts (MCPs) displayed very similar characteristics, indicating similar functional organization of thylakoid membranes in both types of chloroplasts. Light response curves, however, revealed much earlier saturation of photosynthetic electron flow in GCPs than in MCPs. Under anaerobiosis, photosynthetic electron flow and membrane energization were severely suppressed. A similar effect was observed in guard cells when epidermal peels were incubated with the fungal toxin fusicoccin which activates the plasma membrane H+-ATPase and causes irreversible opening of stomata. The drop in electron transport rate was prevented by blocking ATP consumption of the H+ pump or by glucose addition. These results show that chlorophyll fluorescence quenching analysis allows profound insights into stomatal physiology.  相似文献   

11.
The effectiveness of several extraction procedures in solubilizing 3H-spiroperidol receptor sites was examined. Of the solubilizing agents tested, digitonin and lysolecithin were both effective in solubilization of the receptor. Lysolecithin, however, yielded four times as many receptor sites as that obtained with digitonin. The soluble receptor retained the essential characteristics of the membrane bound sites. Butaclamol stereospecificity inhibited the uptake of 2 × 10?9M, 3H-spiroperidol solubilized receptor at an IC50 value similar to that of intact membrane. Stereospecifically of butaclamol antagonism was not maintained, however, when a cerebellum, or heat inactivated caudate preparation was used. The solubilized preparations were sensitive to the effects of the specific dopamine agonist 6,7-dihydroxy-2-aminotetralin (ADTN) which inhibited 3H-spiroperidol binding with low IC50 values similar to those obtained with intact membrane receptor. Displacement of 3H-spiroperidol from 3H-spiroperidol receptor complex was produced by butaclamol stereospecifically, and for other competitive antagonists including haloperidol, spiroperidol and R 1187 in a manner similar to that of the intact membrane receptor. Both microsomes and synaptosomes could be similarly solubilized with digitonin and retained stereospecific reversibility of binding in the presence of butaclamol. Chromatography of solubilized lysolecithin calf caudate, 3H-spiroperidol receptor complex reveals a single peak of radioactivity which was eluted just prior to rabbit gamma globulin, suggesting an estimated molecular weight of 150,000 to 200,000 daltons.  相似文献   

12.
Highly purified plasma membrane fractions have been prepared from GH3 pituitary cells grown in suspension cultures. These membrane fractions have been obtained by differential and sucrose gradient centrifugation and were characterized in terms of their lipid content, marker enzyme analysis and the binding of 3H-labelled thyrotropin-releasing hormone (TRH) to its receptor. Alkaline phosphatase and 5′-nucleotidase activities were enriched 12- to 15-fold in the plasma membrane fraction with somewhat greater enrichment (28-fold) of the specific binding component for [3H]TRH, with a specific activity of 2286 fmol [3H]TRH bound per mg protein. A single class of binding sites for TRH was observed with an apparent dissociation constant of 18 nM, a value similar to that observed for intact cells. No detectable TRH binding to the nuclear fraction was observed that could not be ascribed to residual plasma membrane contamination. By electron microscopy, these fragments appeared to be sealed vesicles with an average diameter of approximately 1800 Å. The binding of 125I-labelled wheat germ agglutinin was used as a marker for plasma membrane purification. In addition to specific binding to this membrane fraction, specific binding was also observed in the nuclear fraction. Studies with fluorescein-labelled wheat germ agglutinin revealed that, in fixed cells, fluorescence was restricted to the plasma membrane. However, if the cells were treated with Triton before labelling, most of the fluorescence was then associated with the cell nucleus. Hence, the use of wheat germ agglutinin binding as a specific plasma membrane marker must be reevaluated.  相似文献   

13.
Miquel M  Dubacq JP 《Plant physiology》1992,100(1):472-481
When incubated with [1-14C]acetate and cofactors (ATP, Coenzyme A, sn-glycerol-3-phosphate, UDPgalactose, and NADH), intact chloroplasts synthesized fatty acids that were subsequently incorporated into most of the lipid classes. To study lipid synthesis at the chloroplast envelope membrane level, 14C-labeled pea (Pisum sativum) chloroplasts were subfractionated using a single flotation gradient. The different envelope membrane fractions were characterized by their density, lipid and polypeptide composition, and the localization of enzymic activities (UDPgalactose-1,2 diacylglycerol galactosyltransferase, Mg2+-dependent ATPase). They were identified as very pure outer membranes (light fraction) and strongly enriched inner membranes (heavy fraction). A fraction of intermediate density, which probably contained double membranes, was also isolated. Labeled glycerolipids recovered in the inner envelope membrane were phosphatidic acid, phosphatidyl-glycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol. Their 14C-fatty acid composition indicated that a biosynthetic pathway similar to the prokaryotic pathway present in cyanobacteria occurred in the inner membrane. In the outer membrane, phosphatidylcholine was the most labeled glycerolipid. Phosphatidic acid, phosphatidylglycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol were also labeled. The 14C-fatty acid composition of these lipids showed a higher proportion of oleate than palmitate. This labeling, different from that of the inner membrane, could result either from transacylation activities or from a biosynthetic pathway not yet described in pea and occurring partly in the outer chloroplast envelope membrane. This metabolism would work on an oleate-rich pool of fatty acids, possibly due to the export of oleate from chloroplast toward the extrachloroplastic medium. The respective roles of each membrane for chloroplast lipid synthesis are emphasized.  相似文献   

14.
The mesocarp tissue of zucchini (Cucurbita pepo L. cv. Black Beauty, zucchini) fruit exhibits ATP-dependent H+-pumping activities associated with tonoplast (nitrate-sensitive) and plasma membrane (vanadate-sensitive) vesicles. The two activities are easily separated on step gradients with isopycnic densities lower than usually reported (< 20% (w/w) sucrose for tonoplast; 25–35% (w/w) sucrose for plasma membrane). The tonoplast is relatively impermeable to H+ (the half-time for equilibration of a pH gradient is 23–36 min) compared to plasma membrane (half-time of 4–6 min). Anion permeability was measured by adding ATP in the absence of an accompanying K+ salt, then measuring the increase in the pH gradient caused by the addition of a K+ salt. The increase in the pH gradient is presumably due to alleviation of the Δψ component (positive inside) and consequent increase in the Δ pH component (acid inside) of the electrochemical gradient by movement of the anion into the vesicle interior. Cl and NO3 are permeable, SO42− is not. The anion permeabilities of the tonoplast and plasma membrane were similar. This is inconsistent with the marked difference in the H+ permeabilities, but might be explained by the presence of anion channel(s) associated with tonoplast-derived vesicles.  相似文献   

15.
Abstract. A comparative study of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization in bovine retinal capillary pericytes (BRCP) and bovine retinal pigment epithelial cells (BRPE) was carried out. Both cells were permeabilized with saponin. The two cell types had similar basal levels of [Ca2+]i (130 nM for BRCP, 132 nM for BRPE) and responded to IP, in a dose-dependent manner. However, when stimulated by various concentrations of IP3 (1–10 μM), the increase in [Ca2+]i of BRCP was always two- to threefold higher than that in BRPE. Subcellular-fractionation studies showed that a single population of IP3 binding site with a high affinity and high specificity of IP3 mainly localized to plasma membrane in these two cell types. Although the dissociation constant of specific [32P]-IP3 binding sites (Kd 1.9–2.8 nM) was similar, the profile of maximal binding capacity (Bmax) of each fraction was markedly different. In comparison, plasma membrane fractions of BRCP were with Bmax of 165 fmol/mg protein versus 90 fmol/mg protein for BRPE membranes. The ATP-dependent Ca2uptake and IP3-dependent Ca2+ release were observed in the both plasma membrane fractions. With quantitative correlation, the membrane fraction (2 mg) of BRCP released 0.2 nmol Ca2+ whereas BRPE only released 0.07 nmol Ca2+ with the same dose of IP3 (5 μM). The selectively higher density of IP, binding sites in coupling to the larger Ca2+-release in the membrane of BRCP suggests that the quantity of Ca2+ mobilized is determined by the spatially preferential distribution of membrane-associated IP3 binding sites. These findings may provide an explanation for the differences observed between BRCP and BRPE in IP,-induced DNA replication.  相似文献   

16.
Abstract Membrane potentials (pd's) of epidermal bladder cells and green leaf cells of Mesembryanthemum crystallinum L. are rather low (between ?10 and ?40 mV). During growth on 400 mM NaCl membrane potentials decrease further. As shown previously, plants grown on 400 mM NaCl show the diurnal changes of malate levels typical for plants having crassulacean acid metabolism. Therefore, in this study membrane potentials were measured at different times of the day, but no diurnal variations of pd were correlated with diurnal oscillations of malate levels. Resting potentials are similar in bladder cells and in green leaf cells and are similar in continuous light and darkness. Both bladder and leaf cells display light-triggered photosynthesis-dependent oscillations of the membrane potential although the bladder cells do not appear to be photosynthetically very active. This suggests electrical coupling between the bladder cells and the underlying green cells. Over a larger distance (2 mm) in the leaves, however, there is no direct evidence for electrical coupling. Cl?, Na+, and K+ concentrations are similar in bladder cells and in the photosynthetically active tissue of leaves and stems. Bladder cells appear to contain high concentrations of free oxalate. The present findings corroborate earlier conclusions that the epidermal bladder cells of M. crystallinum function as peripheral water reservoirs providing protection from short term water stress.  相似文献   

17.
The outer membrane of turnip (Brassica rapa L.) mitochondria was isolated by incubating the mitochondria with a dilute digitonin solution and differential centrifuging. The outer membrane fraction was not contaminated by inner membrane enzymes and lacked an NADPH-cytochrome c reductase. However it possessed very active NADH-cytochrome c, dichloroindophenol and ferricyanide reductases which were insensitive to antimycin A, Amytal and low (less than 10 μm) concentrations of Dicumarol. p-Chloromercuribenzoate (ClHgBzO?) and high concentrations (greater than 10 μm) of Dicumarol inhibited the reductases, ClHgBzO? almost completely. Preincubation of the outer membrane with NADH protected it from ClHgBzO? inhibition. An acid phosphatase and an NADPH-ferricyanide reductase were also detected, but the latter was only loosely bound to the membrane. The NADH dehydrogenase of the outer membrane was insensitive to ethylene glycol-bis(β-aminoethyl ether)N,N′-tetraacetate (1 mm) and was not stimulated by CaCl2 (0.5 mm), thus differing from the external NADH oxidase of the inner membrane (Coleman, J. O. D., and Palmer, J. M. (1971) FEBS Lett., 17, 203–208). Respiratory-linked oxidation of exogenous NADH by intact mitochondria showed a similar pattern of inhibition by ClHgBzO? as did the outer membrane, but was inhibited strongly by low concentrations of Dicumarol (5 μm inhibited by 70%).  相似文献   

18.
Plasma membranes were purified from secondary chick embryo fibroblasts labeled with [35S]methionine for 1 or 18 h. The total cell homogenate, postnuclear supernatant and plasma membrane fractions were analyzed by two-dimensional electrophoresis (isoelectric focusing followed by SDS-slab gel electrophoresis). The α, β, and γ isoelectric variants of actin were present in similar proportion in membranes, supernatant, and cell homogenate as determined by incorporation of 35S into each species of actin. These results indicate that the plasma membrane actin of chick fibroblasts is heterogeneous and that no isoelectric variant of actin is unique to the plasma membrane.  相似文献   

19.
We examined the effects of seven n-alkyl alcohols (from n-butyl to n-undecyl alcohol), isoamyl alcohol and benzyl alcohol on the activity of membrane enzyme Mg2+-ATPase of the rabbit small intestinal brush border membrane. Their relationships with the changes in the fluidity of the membrane lipid bilayer were examined through studies on the fluorescence anisotropies of diphenylhexatriene (DPH) and its ionic derivatives. Good linear correlations were found both between the partition coefficients of the alcohols and their concentrations causing similar decreases in the activity of Mg2+-ATPase and between their partition coefficients and the alcohol-induced changes in fluorescence anisotropies. Within the concentration range of the alcohols tested, including isoamyl alcohol and benzyl alcohol, the decreases in activity of the membrane enzyme Mg2+-ATPase clearly corresponded with the decreases in fluorescence anisotropy of DPH, which is thought to be located within the hydrophobic core of the membrane. From these findings, one possible explanation is that inhibition of this enzyme by the alcohols is due to perturbation of the lipid bilayer of the brush border membrane.The authors thank M. Takano, PhD and Y. Tomita, PhD, Department of Pharmacy, University Hospital of Kyoto University, for instruction in preparation of the brush border membrane vesicles. This work was supported in part by grants from the Japanese Ministry of Education, Science and Culture (05671795 and 06304044) and Takeda Science Foundation.  相似文献   

20.
Immature oocyte membrane properties of a starfish, Patiria miniata, were investigated by microelectrode techniques. The resting membrane potential in artificial seawater (ASW) was ?78.5 ± 6.7 mV (n = 61, inside negative). This was mainly accounted for by a selective permeability to potassium ions. Potassium ion-selective microelectrodes were used to measure intracellular K+ ion activity, which was 350 mM. The sodium to potassium permeability ratio was 0.02 ± 0.01 (n = 4). The current-voltage relation was nonlinear. The I–V curve included both areas of inward and outward rectification. The dependence of inward rectification upon the K+ ion electrochemical gradient was demonstrated. The membrane was capable of a regenerative action potential due to permeability changes for Ca2+ and Na+ ions. The Ca and Na components of the action potential were identified. The Ca component was reversibly suppressed by cobalt and irreversibly blocked by D-600. The Na component was tetrodotoxin (TTX) insensitive. The excitable response of P. miniata oocytes is similar to that described by Miyazaki et al. (1975a) for those of the starfish Asterina pectinifera.Immature oocytes were stimulated to mature with 10?5M 1-methyladenine (1-MA) during continuous monitoring of the membrane potential. The resting potential in ASW became more inside negative during maturation. This change of the passive membrane property of the oocyte may be accounted for by the increased selectivity to K+ ions. The specific membrane resistance near the resting potential increased from 4.2 ± 1.4 to 21 ± 8.7 kΩ·cm2 (n = 15) during maturation, while the specific membrane capacitance decreased slightly from 2 ± 0.5 to 1.7 ± 0.6 μF/cm2 (n = 5). Maturation had little effect upon the active membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号