首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of human genetic disorders known as premature aging syndromes may provide insight into the mechanisms of cellular senescence. These diseases are clinically characterized by the premature onset and accelerated progression of numerous features normally associated with human aging. Previous studies have indicated that fibroblasts derived from premature aging syndrome patients have in vitro growth properties similar to senescent fibroblasts from normal individuals. As an initial approach to determine whether gene expression is altered in premature aging syndrome fibroblasts, RNA was prepared from various cell strains and used for gel blot hybridization experiments. Although normal fibroblasts only express platelet-derived growth factor (PDGF) A-chain mRNA for a brief period following mitogenic stimulation, one strain of Hutchinson-Gilford (progeria) syndrome fibroblasts, AG3513, constitutively expresses PDGF A-chain mRNA and PDGF-AA homodimers. The PDGF A-chain gene does not appear to be amplified or rearranged in these fibroblasts. AG3513 progeria fibroblasts have properties characteristic of senescent cells, including an altered morphology and a diminished mitogenic response to growth promoters. The diminished response of AG3513 progeria fibroblasts to PDGF stimulation was examined in some detail. Studies using 125I-PDGF-BB, which binds with high affinity to both A- and B-type PDGF receptors, indicate that normal and AG3513 progeria fibroblasts have a similar number of PDGF receptors. Although receptor autophosphorylation occurs normally in PDGF-stimulated AG3513 progeria fibroblasts, c-fos mRNA induction does not. The senescent phenotype of AG3513 fibroblasts is probably unrelated to their constitutive PDGF A-chain gene expression; further studies are necessary in order to directly address this issue. Also, additional analysis of this progeria fibroblast strain may provide information on the control of mitogen-inducible gene expression in normal cells.  相似文献   

2.
Summary An abnormal response to UV-irradiation was found in a patient affected by precocious senescence. A decreased level of unscheduled DNA synthesis (UDS) was present in 60% of Go lymphocytes and in fibroblasts after the fifth culture passage. Hypersensitivity of lymphocytes to UV-light was indicated also by a decreased rate of DNA synthesis after mitogen stimulation. The results of this study indicate that the defect which determines the premature ageing influences the capacity to repair UV-induced DNA damage.  相似文献   

3.
In Alzheimer's disease, the typical clinical symptoms and the pathological findings are restricted to the nervous system. Nevertheless, like in some other neurologic-metabolic disorders, several alterations are found in peripheral tissues. The aim of this study was to examine whether cellular properties which can be studied in vitro on skin fibroblast cultures obtained from Alzheimer's disease patients differ from those of age-matched controls. Down syndrome patients were also included, since the same neuropathological findings are present in nearly 100% of Down syndrome patients. Since Alzheimer's disease is an age-related disorder, we examined the growth characteristics of skin fibroblast cultures. The in vitro senescence of cultured fibroblasts is widely accepted as a model for in vivo ageing. Normal growth properties were found. We can conclude that there is no premature ageing in Alzheimer's disease nor in Down syndrome and that the abnormalities found in peripheral tissues are related to the disease itself. The beta amyloid precursor protein (beta APP) has been shown to have adhesive interactions. We therefore investigated several parameters of adhesion in the skin fibroblast cultures: adhesion to a fibronectin coat, adhesion to extracellular matrix of Alzheimer's disease cultures and semi-quantification of adhesion-related molecules (beta 1-integrin, cell surface proteoglycans, extracellular matrix proteoglycans, extracellular matrix fibronectin). No significant difference was found in the parameters examined.  相似文献   

4.
Lipodystrophic syndromes associated with mutations in LMNA, encoding A-type lamins, and with HIV antiretroviral treatments share several clinical characteristics. Nuclear alterations and prelamin A accumulation have been reported in fibroblasts from patients with LMNA mutations and adipocytes exposed to protease inhibitors (PI). As genetically altered lamin A maturation also results in premature ageing syndromes with lipodystrophy, we studied prelamin A expression and senescence markers in cultured human fibroblasts bearing six different LMNA mutations or treated with PIs. As compared to control cells, fibroblasts with LMNA mutations or treated with PIs had nuclear shape abnormalities and reduced proliferative activity that worsened with increasing cellular passages. They exhibited prelamin A accumulation, increased oxidative stress, decreased expression of mitochondrial respiratory chain proteins and premature cellular senescence. Inhibition of prelamin A farnesylation prevented cellular senescence and oxidative stress. Adipose tissue samples from patients with LMNA mutations or treated with PIs also showed retention of prelamin A, overexpression of the cell cycle checkpoint inhibitor p16 and altered mitochondrial markers. Thus, both LMNA mutations and PI treatment result in accumulation of farnesylated prelamin A and oxidative stress that trigger premature cellular senescence. These alterations could participate in the pathophysiology of lipodystrophic syndromes and lead to premature ageing complications.  相似文献   

5.
6.
The activity of 5alpha-reductase, the enzyme that converts testosterone to dihydrotestosterone, has been assessed in cell-free extracts of fibroblasts grown from foreskin, labia majora, scrotum, and nongenital skin from control subjects, from patients with developmental defects of the urogenital system, drom two subjects with the type 2 form of familial incomplete male pseudohermaphroditism and from individuals with other forms of hereditary male pseudohermaphoditism. Enzyme activity was shown to be maximal in the pH range of 5 to 6. Substrate specificity studies indicated that the enzyme so assayed is the 5alpha-reductase previously characterized in human foreskin. The activity of the enzyme was low in normal fibroblasts grown from nongenital skin and high in most fibroblasts grown from genital skin. 5alpha-Reductase activity in extracts of foreskin fibroblasts from two subjects with the type 2 disorder was undetectable at pH 5.5. Activity in comparable fibroblast extracts from most patients with other forms of hereditary male pseudohermaphroditism was easily measurable.  相似文献   

7.
Werner syndrome (WS) is an inherited disorder that produces somatic stunting, premature ageing and early onset of degenerative and neoplastic diseases. Cultured fibroblasts derived from subjects with WS are found to undergo premature replicative senescence and thus provide a cellular model system to study the disorder. Recently, several overexpressed gene sequences isolated from a WS fibroblast cDNA library have been shown to possess the capacity to inhibit DNA synthesis and disrupt many normal biochemical processes. Because a similar constellation of genes is overexpressed in WS and senescent normal fibroblasts, these data suggest the existence of a common molecular genetic pathway for replicative senescence in both types of cell. We propose that the primary defect in WS is a mutation in a gene for a trans-acting repressor protein that reduces its binding affinity for shared regulatory regions of several genes, including those that encode inhibitors of DNA synthesis (IDS). The mutant WS repressor triggers a sequence of premature expression of IDS and other genes, with resulting inhibition of DNA synthesis and early cellular senescence, events which occur much later in normal cells.  相似文献   

8.
Proteomics has revealed differential protein expression and glycosylation in membrane proteins from premature aging Hutchinson-Gilford progeria syndrome fibroblasts (progeria). Progeria is a rare autosomal dominant genetic disorder of premature aging characterized by marked growth retardation and specific, progressive, premature senescent changes of the skin and other tissues. Affected children live to an average age of 13 years. The 1q20-24 region of chromosome 1 which codes for one of these proteins, lamin A/C, has previously been implicated by Brown et al. (1990) who described identical twins with progeria, where cytogenetic analysis showed an inverted insertion in the long arm of the chromosome in 70% of cells. Luengo et al. (2002) similarly reported an interstitial deletion of chromosome 1q23, in a 9-year-old patient with a classic clinical picture of progeria.  相似文献   

9.
10.
Xie X  Zhang H  Gao P  Wang L  Zhang A  Xie S  Li J 《DNA and cell biology》2012,31(5):745-752
SIRT6, a member of the yeast silent information regulator 2 (SIR2) family, possesses both robust ADP-ribosyltransferase activity and protein deacetylase activity depending on NAD(+). It has been shown to maintain genomic stability and telomere integrity, and to prevent age-related disorders and premature ageing. However, the mechanism by which SIRT6 overexpression affects cellular ageing is not well understood. In this study, we investigated the effect of SIRT6 overexpression on cytotoxicity and ageing syndromes. A full-length cDNA of porcine SIRT6 was inserted into pcDNA3.1(-) and subsequently transfected into porcine fetal fibroblasts (PFFs). Overexpression of SIRT6 was identified by quantitative real-time polymerase chain reaction and western blot assay. The cells were incubated with D-galactose and tert-butylhydroperoxide at their cytotoxic concentrations. The damage caused by the stresses was detected with fluorescence microscopy using 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder analysis, and observation under transmission electron microscopy. The results showed that SIRT6 overexpression in cells decreased damage to the nuclei. It also protected against the generation of DNA fragmentation and damage in the ultramicrostructure of the cells, especially damage to mitochondria. Our observations suggested that one function of SIRT6 in PFFs was to dampen cytotoxicity, and, therefore, to decrease the damage that causes premature senescence.  相似文献   

11.
In recent years, an impact of the p53 tumor suppressor protein in the processes of cellular and organismal ageing became evident. First hints were found in model organisms like Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster where a clear connection between ageing phenotypes and pathways that are regulated by p53, were found. Interestingly, pathways that are central to the ageing process are usually also involved in energy metabolism and are highly conserved throughout evolution. This also supports the long known empiric finding that caloric restriction has a positive impact on the life span of a wide variety of organisms. Within the last years, on the molecular level, an involvement of the insulin-like growth factor and of the histone deacetylase SRIT1 could be shown. Insight on the impact of p53 on ageing at the organismal level came from mice expressing aberrant forms of the p53 protein. Obviously, the balance of the full length p53 protein and of the shorter p44/DeltaNp53 isomer bear a strong impact on ageing. The shorter isoform regulates full length p53 and in cases where there is too much of the longer isoform, this leads to elevated apoptosis resulting in decreased tumor incidence but also in premature ageing due to exhaustion of the renewal potential. Therefore, modulating the expression of the truncated p53 isoform accordingly, might lead to increased health-span and elevated life-span.  相似文献   

12.
Since recent studies have suggested a diminished mitochondrial functional capacity in late-passage ('old') compared to early-passage ('young') normal fibroblasts and fibroblasts from the Hutchinson-Gilford (progeria) syndrome of premature ageing, we analysed whole-cell preparations on the high voltage electron microscope to look for mitochondrial and related defects. All strains examined showed considerable heterogeneity in cell size and intracellular morphology. Mitochondria were readily seen in all cells, predominantly as long slender rods with frequent branching, but occasional circular and saccular forms were also evident. Various parameters of mitochondrial mass including mean number, weight, and total length of mitochondria per cell weight tended to increase in old and progeria cells, but only the former attained statistical significance due to the heterogeneity and consequent variance. A significant finding was the decreased width of mitochondria in old and progeria cells. Cystic blebs were evident in mitochondria of some cells with an apparent increase in old and progeria fibroblasts. These blebs appeared to be due to weakening of the inner membrane, allowing dilatation of the outer membrane which otherwise appeared intact. The number of osmiophilic inclusions per cell weight, particularly lipofuscin granules and autophagic vacuoles, was significantly increased in old and progeria cells. In conclusion, despite some morphological changes, mitochondria of old and progeria cells maintain a structurally and bioenergetically adequate mass compatible with continued cellular viability.  相似文献   

13.
In six unrelated patients with hereditary tyrosinemia type 1 (HT1), three different disease-causing mutations were found by DNA sequencing. Two Pakistani patients, with acute and intermediate forms of HT1, were homozygous for a G192-->T mutation in the last nucleotide of exon 2. This caused aberrant splicing with partial intron 2 retention and premature termination. Three Turkish patients with chronic and intermediate forms of HT1 were homozygous for an A698-->T mutation substituting aspartic acid 233 with valine. A Norwegian patient with an intermediate clinical phenotype was heterozygous for G786-->A, introducing a TGA stop codon for Trp262 (W262X). Site-directed mutagenesis and expression in a rabbit reticulocyte lysate system demonstrated that the nonsense and missense mutations abolished fumarylacetoacetase activity and gave reduced amounts of a truncated and a full-length protein, respectively. Simple tests were established to identify the three mutations by restriction digestion of PCR-amplified genomic DNA. Among 30 additional HT1 patients investigated, 2 were found to be homozygous and 1 heterozygous for G192-->T. Two other patients were homozygous and one was heterozygous for W262X.  相似文献   

14.
Summary 4-Methylumbelliferyl neuraminidase activity was studied in fibroblasts, leukocytes, and frozen tissues from adult patients with -galactosidase-neuraminidase deficiency and specific clinical manifestations. This enzyme was almost completely deficient in fibroblasts, but the residual activity was relatively high (20% of the control mean) in the leukocytes from the patients. The frozen liver from one patient showed the enzyme activity as high as controls.This enzyme consisted of two components, freeze-labile and freeze-stable, and it was demonstrated that only the labile enzyme was deficient in fibroblasts and leukocytes. The apparently normal activity of neuraminidase in frozen autopsy tissues of a patient may be explained by the loss of the labile component in control tissues after a long-term freezing. The neuraminidase activity was variable in parents and no definite conclusion was drawn on the hereditary nature of the disease.  相似文献   

15.
16.
A mitogenic and plasminogen activator (PA)-inducing activity for endothelial cells has been identified in serum-free culture medium of normal AG 7680 and transformed tumorigenic GM 7373 fetal bovine aortic endothelial (FBAE) cells. The activity binds to heparin-Sepharose and it is quenched by polyclonal anti-human placental basic fibroblast growth factor (bFGF) antibodies. In the serum-free conditioned medium of FBAE cells, the anti-bFGF antiserum recognizes an immunorective Mr 20,000 molecule which co-purifies with the mitogenic and PA-inducing activity on a heparin-Sepharose column. The partially purified Mr 20,000 bFGF-like molecule competes with the typical Mr 18,000 125I-bFGF form for the binding to high-affinity bFGF receptors in intact GM 7373 cells. Immunoprecipitation of biosynthetically labeled GM 7373 cells with anti-bFGF antiserum confirms the presence of a Mr 20,000 bFGF-like molecule in the conditioned medium of these cells and identifies the typical Mr 16,000 and Mr 18,000 bFGF forms and two high-molecular-weight immunoreactive Mr 22,000 and Mr 25,000 bFGF forms in their cell extract. Immunoreactive Mr 20,000 bFGF is detectable also in the conditioned medium of transformed nontumorigenic FBAE GM 7372 cells and of adult bovine aortic endothelial cells, but not in the culture medium of nonendothelial cell types, including rat and mouse fibroblasts, human hepatoma, and human endometrial adenocarcinoma cells. The results indicate that bovine endothelial cells secrete a Mr 20,000 bFGF-like molecule which shares several biological, biochemical, and immunological characteristics with the typical cell-associated Mr 18,000 bFGF.  相似文献   

17.
Isovaleric acidemia is a rare inborn error of metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), a nucleus-encoded, homotetrameric, mitochondrial flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA. We have previously identified a nucleotide deletion in the gene for IVD in fibroblasts from a patient with isovaleric acidemia leading to a shift in reading frame and premature termination of translation. The mutant IVD precursor is imported and processed to mature size, but no active enzyme is detected in mutant fibroblasts or expressed in Escherichia coli. Examination of the crystal structure of human IVD reveals that the C terminus is involved in tetramer stability. In vitro mitochondrial import experiments show that wild type IVD protein rapidly and stably forms mature homotetramer following import, whereas Type III mutant protein never forms stable oligomers. An additional series of mutant proteins with truncations and/or alterations in the C-terminal sequence implicates the C terminus of IVD in both enzyme activity and tetramer stability. Importantly, a dimeric intermediate in the folding pathway for wild type IVD has been identified in the in vitro mitochondrial import experiments, the first report of such an intermediate in the biogenesis of an acyl-CoA dehydrogenase.  相似文献   

18.
Hereditary methemoglobinemia with generalized deficiency of NADH-cytochrome b5 reductase (b5R) (type II) is a rare disease characterized by severe developmental abnormalities, which often lead to premature death. Although the molecular relationship between the symptoms of this condition and the enzyme deficit are not understood, it is thought that an important cause is the loss of the lipid metabolizing activities of the endoplasmic reticulum-located reductase. However, the functions of the form located on outer mitochondrial membranes have not been considered previously. In this study, we have analyzed the gene of an Italian patient and identified a novel G-->T transversion at the splice-acceptor site of the 9th exon, which results in the complete absence of immunologically detectable b5R in blood cells and skin fibroblasts. In cultured fibroblasts of the patient, NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities were severely reduced. The latter activity is known to be due to b5R located on outer mitochondrial membranes. Thus, our results demonstrate that the reductase in its two membrane locations, endoplasmic reticulum and outer mitochondrial membranes, is the product of the same gene and suggest that a defect in ascorbate regeneration may contribute to the phenotype of hereditary methemoglobinemia of the generalized type.  相似文献   

19.
Summary We have studied nine patients aged 1 month to 16 years with 46, XX karyotypes and testicular tissue. Some of these patients were followed through puberty. Phenotypically, two presented normal and seven abnormal external genitalia (AG). Among this latter group, four showed hypospadias and three true hermaphroditism (TH). The endocrine data were similar in all three groups: testosterone levels were within normal limits during puberty, decreasing in adulthood; gonadotrophin levels were above the control values at mid puberty. Histologies of the two sub groups of AG patients were identical up to 5 years of age and presented differences when compared with controls, regardless of the ovarian part of the ovotestis. However, in patients older than 8 years, germ cells disappeared and dysgenesis became obvious. In one patient, the ovarian zone of the gonad was detected only after complete serial sections of the removed gonad were examined. Southern blot analysis with Y-DNA probes displayed Y-specific material for the classic 46 XX males and a lack of such sequences for all patients with AG and TH. Based on these findings, we postulate that 46, XX males with AG and 46, XX TH may represent altenative manifestations of the same genetic defect. These data together with those concerning familial cases of 46, XX males with AG and 46, XX TH suggest an autosomally (or pseudoautosomally) determined mechanism.  相似文献   

20.
Cellular senescence has long been used as a cellular model for understanding mechanisms underlying the ageing process. Compelling evidence obtained in recent years demonstrate that DNA damage is a common mediator for both replicative senescence, which is triggered by telomere shortening, and premature cellular senescence induced by various stressors such as oncogenic stress and oxidative stress. Extensive observations suggest that DNA damage accumulates with age and that this may be due to an increase in production of reactive oxygen species (ROS) and a decline in DNA repair capacity with age. Mutation or disrupted expression of genes that increase DNA damage often result in premature ageing. In contrast, interventions that enhance resistance to oxidative stress and attenuate DNA damage contribute towards longevity. This evidence suggests that genomic instability plays a causative role in the ageing process. However, conflicting findings exist which indicate that ROS production and oxidative damage levels of macromolecules including DNA do not always correlate with lifespan in model animals. Here we review the recent advances in addressing the role of DNA damage in cellular senescence and organismal ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号