首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The transglycosylative action of testicular hyaluronidase   总被引:10,自引:0,他引:10  
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
1. It has been shown that a number of proteolytic enzymes and snake venom, in relatively small amounts, and within a wide range of pH variation, will restore hyaluronidase activity after its inhibition by serum. 2. The known properties of the venom protease are found to be identical with those of Haas' "proinvasin I." It is concluded that the protease of the venom offers adequate explanation for the effects previously attributed to "proinvasin I." 3. Proteolytic activity is found in hyaluronidase preparations of bovine origin and is considered to be responsible for the reversal of inhibition of hyaluronidase by serum.  相似文献   

18.
19.
The reactions of purified, homogeneous bovine testicular hyaluronidase have been studied with radioactively labeled oligomers of hyalobiuronic acid, (GlcUA-GlcNAc)n, as substrates and acceptors. Transglycosylation occurs by transfer of a glycosyl residue with retention of configuration from a leaving group to an acceptor. On the basis of detailed examination of cleavage and transglycosylation patterns for the trimer; comparison of trimer, tetramer, and polymer as substrates; comparison of acceptors; equilibrium binding; and other data, it is proposed that the enzyme's active site consists of five subsites for hyalobiuronate residues. In the terminology of Schechter, I., and Berger, A. ((1966) Biochemistry 5, 3371), these are s2-s1-s' 2-s3, where the reducing terminus is to the right, and cleavage occurs between s1 and s' 1. It is proposed that subsite s'2 has a high affinity for a substrate residue, while s1 and s'1 have low substrate affinity, and s2 and s' 3 are intermediate in affinity. This proposal is seen to have mechanistic implications. The reactions of several substrates show similar bell-shaped pH dependences, with optima in the region of pH 5 to 5.5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号