首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The rearing environment of first-feeding turbot larvae, usually with high larvae densities and organic matter concentrations, may promote the growth of opportunistic pathogenic Vibrionaceae bacteria, compromising the survival of the larvae. The aim of this study was to assess the effectiveness of the biofilm-forming probiotic Phaeobacter 27-4 strain grown on a ceramic biofilter (probiofilter) in preventing Vibrio anguillarum infections in turbot larvae. In seawater with added microalgae and maintained under turbot larvae rearing conditions, the probiofilter reduced the total Vibrionaceae count and the concentration of V. anguillarum, which was undetectable after 144 h by real-time PCR. The probiofilter also improved the survival of larvae challenged with V. anguillarum, showing an accumulated mortality similar to that of uninfected larvae (35–40 %) and significantly (p?<?0.05) lower than that of infected larvae with no probiofilter (76 %) due to a decrease in the pathogen concentration and in total Vibrionaceae. Furthermore, the probiofilter improved seawater quality by decreasing turbidity. Phaeobacter 27-4 released from the probiofilters was able to survive in the seawater for at least 11 days. The bacterial diversity in the larvae, analysed by denaturing gradient gel electrophoresis, was low, as in the live prey (rotifers), and remained unchanged in the presence of V. anguillarum or the probiofilter; however, the probiofilter reduced the bacterial carrying capacity of the seawater in the tanks. Phaeobacter-grown biofilters can constantly inoculate probiotics into rearing tanks and are therefore potentially useful for bacterial control in both open and recirculating industrial units.  相似文献   

2.
The larvae of many marine invertebrate species are able to delay their settlement and metamorphosis in the absence of characteristic cues from the adult habitat. This phenomenon was experimentally studied in the megalopa stage of Sesarma curacaoense de Man, 1892, a semiterrestrial grapsid crab that lives in the shallow coastal mangrove habitats in the Caribbean region. Duration of the development and survival to metamorphosis to the first juvenile crab stage were compared between experimental treatments, where the water was conditioned with adult crabs (“adult-conditioned water,” ACW) and control groups reared in filtered seawater. In the experiments with larvae from two different females, development duration was significantly shorter and mortality lower in water conditioned with conspecific adults. In the two control groups, the effects of supply with an artificial substrate (nylon gauze) were tested. This comparison showed that the presence of substrate did not significantly influence the time to metamorphosis, but did reduce the mortality rate. In all later experiments, the megalopae were thus routinely provided with nylon gauze as a substrate. In each of the three subsequent replicate experiments conducted with larvae from different females, survival rate and development time to metamorphosis were compared between one control group and four treatments with ACW. The effectiveness of conspecific (S. curacaoense) adult odors as metamorphosis-stimulating cue was, in these experiments, compared with that of ACW from one congener (S. rectum) and two species belonging to different genera within the Grapsidae (Armases miersii, Chasmagnathus granulata). While the rate of survival showed inconsistent patterns among repeated experiments, the development was consistently fastest with conspecific ACW, followed by ACW from S. rectum, A. miersii and C. granulata. Only the conspecific and congeneric cues had statistically significant effects (i.e. shorter development than in the controls). These response patterns suggest that chemically similar factors (presumably pheromones) are produced by closely related species and, thus, their chemical structure may reflect phylogenetical relationships within a clade.  相似文献   

3.
The following protistan diets were tested on blue crab larvae: the algae Isochrisis galbana Parke, Monochrisis lutheri Droop, Dunaliella sp., and an unknown mixture; and the ciliated protozoans Euplotes vannus Muller and Parauronema virginianum(2/1) Thompson. None of these diets resulted in development past the first zoea stage, although some apparently were ingested and delayed mortality as compared to unfed controls.The rotifer Brachionus plicatilis Müller sustained good survival through early zoea development; however, rotifer-fed larvae did not metamorphose to the megalopa. Larvae of the polychaete Hydroides dianthus (Verrill) sustained crab larvae throughout zoea development, resulting in 17% survival to metamorphosis. The percentage mortality per stage was significantly lower in polychaete-fed larvae when compared with rotifer-fed larvae during zoea stages III, VI, and VII. Mean intermolt duration varied between diet treatments during the first three stages, but showed no differences during later zoea development. In tests on groups of late stage sibling larvae, Artemia salina L. nauplii gave development to metamorphosis, whereas rotifers did not.All the diets so far tested on blue crab larvae are classified according to their ability to sustain development. It is demonstrated that the two diets which allow completed development, Hydroides dianthus larvae and Artemia salina nauplii, contain 2–3 times as much lipid per dry weight as do rotifers. A metabolic requirement for lipid late in development may be indicated. Invertebrate larvae derived from yolky telolecithal and centrolecithal eggs may be an important dietary component for brachyuran larvae.  相似文献   

4.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

5.
Larval growth and survival of catfishes are largely influenced by the various biotic and abiotic factors. The present study investigated the effect of different light intensities and photoperiods on growth and survival of Ompok bimaculatus larvae. Three separate trials of 21 days each were carried out in an aquarium tank. The first trial investigated the embryonic changes (based on hatching rate and time) upon exposure to varied light intensity (0, 300, 500, 900 and 1200 lx) and photoperiodic regime (24l:0d, 16l:8d, 12l:12d, 8l:16d and 0l:24d). Subsequently, hatched-out larvae were subjected to the aforementioned intensities (Trial II) and photoperiod (Trial III, intensity of 300 lx) for growth and survival attributes. Eight hundred healthy larvae (average body weight = 0.003 g) were randomly distributed into five treatment groups for the last two trials. Results suggest a higher embryo hatching rate and larval survival at 0 and 300 lx, whereas the largest larval growth was observed at 900 lx. In Trial III, survival was highest in 0l:24d and growth in 24l:0d and 16l:8d was higher (P < 0.05). Performance index was higher (P < 0.05) in both 0 and 300 lx light and decreased at higher intensities. The overall interpretation from the present study concludes that a completely dark rearing environment is recommended for better survival of O. bimaculatus although growth was compromised.  相似文献   

6.
The complete larval development of the grapsid crab Brachynorusgemmellari (Rizza, 1839) was obtained by culture in the Iabomtoiy.Five zoeal stages, the megalopa and the first crab stage aredescribed and illustrated. Larval development from hatchingto first crab took 26 days at 20C. The morphological charaeiarsof the larvae of B.gemmellari are compared with those of otherknown larvae of the genus Brachynosus.  相似文献   

7.
Effect of different dietary squilla chitosan (Csq) concentrations: 0 (control), 0.5, 1 and 2 g 100 g–1 diets were studied for weaned sea bass (Dicentrarchus labrax) post larvae. Post larvae were challenged with Aeromonas hydrophila after 5 feeding days, in order to monitor the prophylactic effect on the Csq fed larvae. The experiment started with an average initial weight of 50 ± 2 mg and total length of 12 ± 2 mm for post larval stage (40 days post hatch; dph), then continued feeding diets for a period of 20 days. Larvae survival percentage (%), mean total length (TL), width (W), total weight (TW), total weight gain (TWG), average daily weight (ADW) and specific growth rate (SGR) were recorded as morphometric measurements representing growth compared to the control groups. The results revealed that 1g Csq 100 g–1 diet at P < 0.05 was the most effective concentration that achieved higher survival percentages; 94.5 ± 0.5 and 74 ± 2.0%, increasing the specific growth rate by 7.22% and 5.77% for non challenged and challenged weaned larval groups, respectively. Otherwise, the control challenged group displayed the lowest performance in all assayed parameters with the coincidental decrease in the survival % and specific growth rates. Similarly, lower growth performance was also observed at 2 g 100 g–1 diet. Thus, the incorporation of chitosan at a level of 1g in fish diet enhanced the performance and reduced the fish mortality under stress conditions.  相似文献   

8.
Although newly described, Pseudopolydora vexillosa is one of the most conspicuous surface-feeding spioniform polychaetes in subtropical waters. This is the first report on larval growth and metamorphosis of P. vexillosa. Newly hatched (3-chaetigers stage) larvae of P. vexillosa reached metamorphic competence at 12-17 chaetigers stage when fed with Chaetoceros gracilis or Dunaliella tertiolecta at a concentration of ∼ 105 cells ml− 1 for 6 to 8 days at 32 psu and 27 °C. Larvae on these two diets achieved comparable levels, of approximately 70% metamorphosis. On the other hand, larvae fed with Isochrysis galbana or starved in 0.22 μm filtered seawater never reached competence during the 10 days of study. The effect of organic matter on larval substrate selection was examined using glass beads, manipulated sediments and natural sediments. A significantly higher percentage of larvae metamorphosed on glass beads that had been submerged in unfiltered natural seawater for 5 days as compared to the control; when manipulating the organic content of sediment as a substratum, significantly more larvae metamorphosed in 100% natural sediment, compared with 0%, 25%, 50%, and 75% natural sediment mixed with different portions of ashed sediment. Surprisingly, with natural undisturbed surface sediment sampled along a transect perpendicular to a sewage discharge site, these laboratory bioassays demonstrate that the larvae of P. vexillosa are capable of responding to sedimentary cues in complex ways to find a habitat suitable for metamorphosis and survival.  相似文献   

9.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

10.
The species composition, period of occurrence, density, and distribution of brachyuran crab larvae (Decapoda: Brachyura) in the Amursky and Ussuriysky bays (Sea of Japan) were studied in May–October 2007 and 2008. The larvae of this group were not numerous, with peak densities occurring in July at maximum water temperatures. The average brachyuran larvae density was up to 126.9 ind./m3 in Ussuriysky Bay and 68 ind./m3 in Amursky Bay; the contribution of Brachyura to all decapod larvae reached 80–90%. In Amursky Bay, the highest density of brachyuran larvae (up to 584 ind./m3) was observed along the western coast over depths to 20 m; in Ussuriysky Bay, the larval density was highest (up to 1817 ind./m3) in the shallowwater northern part and progressively decreased with depth. Larvae of 18 brachyuran species were found in plankton samples. In Amursky Bay, intertidal crab larvae of the genus Hemigrapsus dominated, Eriocheir japonica larvae were fairly numerous. Larvae of the pea crabs Pinnixa rathbuni and Tritodynamia rathbunae and zoeae of the bigtooth rock crab Glebocarcinus amphioetus were predominant in Ussuriysky Bay.  相似文献   

11.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   

12.
The persistence of Dimilin® (diflubenzuron), an insect growth regulator which interferes with chitin formation in the cuticle of insect larvae, has been studied using larvae of the estuarine brachyuran crabRhithropanopeus harrisii (Gould) as test material. The results of the present investigation show that Dimilin breaks down relatively slowly in brackish water. It took about 8 weeks before a 10 ppb solution of Dimilin degraded to a level which did not affect survival of the crab larvae. Earlier it was shown (Christiansen et al., 1978) that nearly 100% ofR. harrisii larvae at each of the four zoeal stages died when molting to the succeeding stage after only 3 days of exposure to 10 ppb Dimilin. Hence, one should be extremely cautious in using Dimilin in estuarine areas where crab larvae occur.  相似文献   

13.
Physiological responses of the euryhaline red drum, Sciaenops ocellatus, to chloride salt addition, low salinity, and high sulfate concentration were measured. Survival was increased by addition of calcium chloride (CaCl2) or magnesium chloride (MgCl2) to dilute artificial seawater (0.2 ppt salinity). Although survival and routine metabolic rates were greater in MgCl2 treatments, growth and feed efficiency were greater in CaCl2 treatments. Marginal metabolic scope increased when CaCl2 or MgCl2 were added to dilute artificial seawater. There was a strong positive linear relationship (p=0.0001, r=0.91) between fish survival and salinity of artificial seawater dilutions over the salinity range 0.1 to 3.0 ppt. Monovalent ion concentrations in red drum plasma varied; whereas, divalent ion concentrations were relatively constant. Survival and growth were not affected by high sulfate concentrations (2000 mg l-1) in 3.0 ppt artificial seawater supplemented with either sodium sulfate or magnesium sulfate. Routine metabolic rate and marginal metabolic scope of red drum exposed to high sulfate concentrations were slightly, but not significantly, lower than those of red drum in 3 ppt artificial seawater.  相似文献   

14.
Three‐day rearing experiments were conducted to study the effect of turbulence on the feeding intensity and survival of pelagic larvae of Japanese flounder Paralichthys olivaceus. Four levels of turbulence as control (10?7·2 m2 s?3), low (10?6·2 m2 s?3), mid (10?5·6 m2 s?3) and high (10?5·0 m2 s?3) were set by changing the flow rate of water pumped through pipes set on the bottom of the tanks. In B‐stage larvae, defined as having buds of elongated dorsal fin rays, the feeding intensity and growth were higher in the low and mid turbulence levels, while survival was highest in the control level. Most of the larvae surviving in the control level, however, were judged to be in a seriously starved condition leading to subsequent high mortality. Because the three‐day span of the rearing experiments was thought to be a little shorter than the periods before starvation‐induced, high mortality occurs. In contrast, for D‐stage larvae, their feeding and growth were optimal in the control and low levels. Feeding was more adversely affected in the high level for D‐stage larvae compared with B‐stage larvae. This is probably due to the compressed body shape and elongated dorsal fin rays of D‐stage larvae, which may be more strongly affected by turbulence and, as a consequence, the larval feeding behaviour such as pursuit and capture of prey organisms becomes less efficient than in lower turbulence. Considering the vertical distribution of B and D‐stage larvae in the oceanic water column, the optimum turbulence level range found in the present study corresponded to a wind speed of 7–10 m s?1. Therefore, moderate weather conditions of this wind speed range are considered to potentially enhance survival of early larval stages of P. olivaceus.  相似文献   

15.
SUMMARY.
  • 1 We evaluated survival, growth and time to maturation of the fairy shrimp, Streptocephalus seali Ryder, in the laboratory at various combinations of temperature and water hardness.
  • 2 Both independent factors affected survival and growth of S. seali. Multiple regression analysis and response surface modelling predict that after 4 days, over 80% survival is obtained at temperatures from 14 to 28°C and water hardnesses from 60 to 130 mg CaCO3 1-?1.
  • 3 Growth rates of larvae were often maximum at physicochemical conditions other than those which had promoted maximum rates of survival. For example, after 12 days mean total body length was almost 12 mm in larvae which had been maintained at 34°C (80 mg CaCO3 1-?1): the maximum survival rate had been obtained at 19°C. Total length was directly correlated with temperature at the lowest hardness tested, but not at the other two hardnesses (100 and 120 mg CaCO3 1-?1). At the latter water hardnesses, total length was significantly less at 34°C than at 32°C on all three sampling occasions (4, 8 and 12 days post-hatch).
  • 4 Similarly, developmental stage of larvae correlated well with temperature but larvae reared at 34°C did not develop more quickly than those reared at 32°C. After 12 days, most larvae at the two highest temperature treatments had developed at least to Stage 14 and many were nearly mature; at 17°C most larvae were still at Stage 10.
  • 5 During our study of maturation rate of females we noted that egg production was initiated after completion of fourteen or fifteen moults. Mean time to maturation at 27°C (17.3±2.8 days) exceeded that at 32°C (12.3±2.6days). The minimum time to maturation of a shrimp was 9 days at 32°C.
  相似文献   

16.
The aim of the experiment was to evaluate the growth and survival of Horabagrus brachysoma larvae at different stocking densities (3, 7, 13, 20, 27 and 33 larvae L?1) during their hatchery phase. Total length and wet weight of the larvae consistently decreased (P < 0.05) at the end of 14 and 28 days of rearing as the density increased. The specific growth rate was significantly (P < 0.05) highest at three larvae L?1 compared to the other five densities. The percent weight gain and survival of larvae was also highest at lowest density. The observation corroborates that catfish larvae can be reared at low densities in stagnant water conditions. Considering the value of larval growth, survival and overall weight gain, the stocking density of seven larvae L?1 has been identified as the maximum for larval rearing of H.  brachysoma under hatchery conditions.  相似文献   

17.
Experiments were conducted to determine optimum stocking density for Clarias batrachus larvae and fry during hatchery rearing. The increase in stocking density decreased the total weight, specific growth rate (SGR) and percent weight gain of Clarias larvae during a 13‐day experiment. Survival rate was highest at a stocking density of 1000 m?2 and lowest at 5000 m?2. Stocking density did not influence the total biomass production of larvae. Clarias batrachus fry performance was studied during a 28‐day hatchery rearing experiment whereby fry stocked at a density of 100 m?2 attained the highest total body weight (P < 0.05). The survival rate greatly declined to 59–61% by a density increase to 300 m?2 and above. Stocking density influenced growth and survival of C. batrachus larvae and fry during hatchery rearing. The best performance was obtained when larvae were stocked at 2000 m?2; survival was highest with C. batrachus fry stocked at 200 m?2.  相似文献   

18.
Japanese Spanish mackerel, Scomberomorus niphonius, larvae feed almost exclusively on fish larvae from the first‐feeding stage. The relationship between the growth of S. niphonius larvae and concentration of major prey organisms of the larvae, clupeid larvae, was investigated in the Sea of Hiuchi, the central Seto Inland Sea, Japan, from 28 to 29 May 1997. Water temperature, salinity, and the concentration of clupeid larvae had no significant effect on the S. niphonius larval concentration. Mean growth rate of S. niphonius larvae varied between 0.38 and 0.64 mm day?1. The temperature and salinity had no significant effect on the mean larval growth rate while there existed prey concentration‐dependent growth at lower prey concentration. The relationship between the mean larval growth rate (Gm) and concentration of clupeid larvae (CC) was expressed by a logarithmic equation: Gm = 0.037 log CC + 0.441 (n = 16, r2 = 0.519, P < 0.01).  相似文献   

19.
The effect of copper ions in seawater (0.02 mg/l) on the early stages of development of the sea urchin Strongylocentrotus intermedius was studied. Copper exposure from fertilization or the prism stage retarded development and growth and led to abnormalities in the morphology of the embryos and larvae. However, if development to the pluteus stage proceeded in clean seawater, an increased copper concentration did not inhibit the growth of larvae. If sea urchin embryos at fertilization and the prism stage were maintained for 1–2 days in seawater containing 0.02 mg Cu/l and then transferred to clean seawater, the adverse consequences of this exposure remained present after 48 h.  相似文献   

20.
Aims: To assess the effects of bacterial treatment at the earliest stages of cod rearing on the microbial load, larval development and performance, testing three bacterial strains (Carnobacterium divergens V41, Arthrobacter sp. and Enterococcus sp.) in vivo that were previously shown to have inhibitory potential towards fish pathogens in vitro. Methods and Results: A bacterial mixture was added eight times to the rearing water from the prehatch to the mid‐larval stage (a 38‐day period). Microbiological analysis of ova, larvae and rearing water was performed regularly. Larval performance and development were evaluated by survival rate, hypersalinity tolerance and physiological measurements. Different larval survival rates were observed within and between treatments, and possibly explained by variations in larval microflora and established probionts. Larvae from one silo, which had been bathed in the bacterial suspension, showed the highest survival rate (42·1%), lowest Vibrio levels, and were significantly heavier (19·3%) and more stress tolerant than control larvae (P < 0·01). This coincided with the intestinal establishment of two of the tested bacteria. Conclusions: Arthrobacter and Enterococcus strains added regularly to the rearing water from the postfertilized egg stage can become established in larval gastrointestinal tract. The Enterococcus strain was associated with increased larval growth, performance and microflora control, indicating its probiotic nature. Significance and Impact of the Study: Regular application of autochthonous probionts may promote larval welfare, development and stress tolerance at early stages, hence increasing production yield in intensive cod larviculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号