首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low density lipoprotein receptor-related protein (LRP) from rat liver membranes binds apoprotein E (apoE)-enriched rabbit beta-migrating very low density lipoproteins (beta-VLDL) in a ligand blotting assay on nitrocellulose membranes. Binding was markedly activated when the beta-VLDL was preincubated with recombinant human apoE-3, native human apoE-3 or E-4, or native rabbit apoE. Human apoE-2, which binds poorly (1-2% of apo E-3 binding) to low density lipoprotein receptors, was approximately 40% as effective as apoE-3 or apoE-4 in binding to LRP. Stimulation of apoE-dependent binding to LRP was blocked by the inclusion of a mixture of human apoC proteins, but not apoA-I or A-II, in the preincubation reaction. High concentrations of apoE did not overcome the apoC inhibition. The effects of apoE and apoC on the ligand blotting assay were paralleled by similar effects in the ability of beta-VLDL to stimulate cholesteryl ester synthesis in mutant human fibroblasts that lack low density lipoprotein receptors. These properties of LRP are consistent with the known effects of apoE and apoC on uptake of chylomicron and very low density lipoprotein remnants in the liver and raise the possibility that LRP functions as a receptor for apoE-enriched forms of these lipoproteins in intact animals.  相似文献   

2.
The binding of native rabbit beta-very low density lipoproteins (beta-VLDL) to the low density lipoprotein receptor-related protein (LRP) requires incubation with exogenous apolipoprotein (apo) E. Inclusion of a mixture of the C apolipoproteins in the incubation inhibits this binding. In the present study, the ability of the individual C apolipoproteins (C-I, C-II, and C-III) to block binding of beta-VLDL to the LRP was examined by measuring cholesteryl ester formation in mutant fibroblasts that lack low density lipoprotein receptors or by measuring binding to the LRP using ligand blotting. In each assay, both apoC-I and apoC-II inhibited binding; apoC-I was the more effective inhibitor. Apolipoprotein C-III had no effect on binding activity, regardless of its sialylation level. Binding of human apoE to rabbit beta-VLDL in the absence or presence of human apoC-I, apoC-II, and monosialo-apoC-III was also determined, by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results of these studies are consistent with a mechanism in which exogenous human apoE displaces the endogenous apoE and the beta-VLDL particle becomes enriched with apoE (by 4.2-fold in this study). At this higher apoE content, the beta-VLDL bound to the LRP. Inclusion of apoC-I, apoC-II, or apoC-III in the incubation mixture resulted in a differential displacement of apoE from the beta-VLDL; however, at the concentrations examined, only apoC-I and apoC-II were capable of displacing sufficient apoE to abolish binding to LRP.  相似文献   

3.
The involvement of the low density lipoprotein receptor-related protein (LRP) in chylomicron remnant (CR) catabolism was investigated. Ligand blot analyses demonstrated that beta-very low density lipoproteins (beta-VLDL) incubated with apolipoprotein E (beta-VLDL+E) bound to the LRP and low density lipoprotein receptors, whereas active (receptor-binding) alpha 2-macroglobulin (alpha 2M) bound only to LRP partially purified from rat liver membranes. Iodinated beta-VLDL+E and active alpha 2M showed high affinity binding to the LRP/alpha 2M receptor of low density lipoprotein receptor-negative fibroblasts. The binding and degradation of radiolabeled alpha 2M by these cells were partially inhibited by beta-VLDL+E. Furthermore, alpha 2M interfered with the internalization of beta-VLDL+E and subsequent induction in the cholesterol esterification by these cells. These studies suggested that remnant lipoproteins and active alpha 2M compete for binding to the LRP/alpha 2M receptor. Next, we examined whether the LRP/alpha 2M receptor plays a role, in the presence of low density lipoprotein receptors, in the in vivo catabolism of CR in mice. In vivo studies demonstrated that the unlabeled active, but not the native, alpha 2M partially inhibited the plasma clearance and hepatic uptake of radiolabeled CR or apoE-enriched radiolabled CR. Likewise, apoE-enriched CR retarded the plasma clearance and hepatic uptake of radiolabeled active alpha 2M. These studies provide physiological evidence that the LRP/alpha 2M receptor may function as a CR receptor that removes CR from the plasma.  相似文献   

4.
Apolipoprotein E (apoE), an apoprotein involved in lipid transport in both the plasma and within the brain, mediates the binding of lipoproteins to members of the low density lipoprotein (LDL) receptor family including the LDL receptor and the LDL receptor-related protein (LRP). ApoE/LRP interactions may be particularly important in brain where both are expressed at high levels, and polymorphisms in the apoE and LRP genes have been linked to AD. To date, only apoE-enriched lipoproteins have been shown to be LRP ligands. To investigate further whether other, more lipid-poor forms of apoE interact with LRP, we tested whether lipid-free apoE in the absence of lipoprotein particles interacts with its cell-surface receptors. No detectable lipid was found associated with bacterially expressed and purified apoE either prior to or following incubation with cells when analyzed by electrospray ionization mass spectrometry. We found that the degradation of lipid-poor (125)I-apoE was significantly higher in wild type as compared to LRP-deficient cells, and was inhibited by receptor-associated protein (RAP). In contrast, (125)I-apoE-enriched beta-VLDL was degraded by both LRP and the LDL receptor. When analyzed via a single cycle of endocytosis, (125)I-apoE was internalized prior to its subsequent intracellular degradation with kinetics typical of receptor-mediated endocytosis. Thus, we conclude that a very lipid-poor form of apoE can be catabolized via cell surface LRP, suggesting that the conformation of apoE necessary for recognition by LRP can be imposed by situations other than an apoE-enriched lipoprotein.  相似文献   

5.
Apolipoprotein E (apoE) plays a critical role in lipoprotein particle clearance from blood plasma through its interaction with the low density lipoprotein (LDL) receptor and other related receptors. Here, we studied a 58-residue peptide encompassing the receptor binding region of apoE. ApoE3-(126-183) was generated by cyanogen bromide cleavage of recombinant apoE3-(1-183), purified by reversed-phase high pressure liquid chromatography, and characterized by mass spectrometry. Far UV CD spectroscopy of the peptide showed that it is unstructured in aqueous solution. The addition of trifluoroethanol or dodecylphosphocholine induces the peptide to adopt an alpha-helical conformation. ApoE3-(126-183) efficiently transforms dimyristoylphosphatidylglycerol (DMPG) vesicles into peptide-lipid complexes. Analysis of apoE3-(126-183). DMPG complexes by electron microscopy revealed disc-shaped particles with an average diameter of 13 +/- 3 nm. Flotation equilibrium analysis yielded a particle molecular mass of 252 kDa. Far UV CD analysis of apoE3-(126-183).DMPG discs provided evidence that the peptide adopts a helical conformation. Competition binding experiments with (125)I-labeled low density lipoprotein (LDL) were conducted to assess the ability of apoE3-(126-183).DMPG complexes to bind to the LDL receptor. Both N-terminal apoE and the peptide, when complexed with DMPG, competed with (125)I-LDL for binding sites on the surface of cultured human skin fibroblasts. Under the conditions employed, apoE3-(126-183).DMPG complexes were similar to apoE3-(1-183).DMPG discs in their ability to bind to the receptor, demonstrating that the peptide represents a good model to study the interaction between apoE and the LDL receptor. Preliminary NMR results indicated that a high resolution structure of the apoE3-(126-183) peptide is obtainable.  相似文献   

6.
The low density lipoprotein (LDL) receptor gene family represents a class of multifunctional, endocytic cell surface receptors. Recently, roles in cellular signaling have also emerged. For instance, the very low density lipoprotein receptor (VLDLR) and the apolipoprotein receptor-2 (apoER2) function in a developmental signaling pathway that regulates the lamination of cortical layers in the brain and involves the activation of tyrosine kinases. Furthermore, the cytoplasmic domain of the LDL receptor-related protein (LRP) was found to be a substrate for the non-receptor tyrosine kinase Src, but the physiological significance of this phosphorylation event remained unknown. Here we show that tyrosine phosphorylation of LRP occurs in caveolae and involves the platelet-derived growth factor (PDGF) receptor beta and phosphoinositide 3-kinase. Receptor-associated protein, an antagonist of ligand binding to LRP, and apoE-enriched beta-VLDL, a ligand for LRP, reduce PDGF-induced tyrosine phosphorylation of the LRP cytoplasmic domain. In the accompanying paper (Loukinova, E., Ranganathan, S., Kuznetsov, S., Gorlatova, N., Migliorini, M., Ulery, P. G., Mikhailenko, I., Lawrence, D. L., and Strickland, D. K. (2002) J. Biol. Chem. 277, 15499-15506) Loukinova et al. further demonstrate that one form of PDGF, PDGF-BB, binds specifically to LRP and that phosphorylation of LRP requires the activation of Src family kinases. Taken together, these findings provide a biochemical basis for a cellular signaling pathway that involves apoE and LRP.  相似文献   

7.
The interaction of apolipoprotein E (apoE) with cell-surface heparan sulfate proteoglycans is an important step in the uptake of lipoprotein remnants by the liver. ApoE interacts predominantly with heparin through the N-terminal binding site spanning the residues around 136-150. In this work, surface plasmon resonance analysis was employed to investigate how amphipathic alpha-helix properties and basic residue organization in this region modulate binding of apoE to heparin. The apoE/heparin interaction involves a two-step process; apoE initially binds to heparin with fast association and dissociation rates, followed by a step exhibiting much slower kinetics. Circular dichroism and surface plasmon resonance experiments using a disulfide-linked mutant, in which opening of the N-terminal helix bundle was prevented, demonstrated that there is no major secondary or tertiary structural change in apoE upon heparin binding. Mutations of Lys-146, a key residue for the heparin interaction, greatly reduced the favorable free energy of binding of the first step without affecting the second step, suggesting that electrostatic interaction is involved in the first binding step. Although lipid-free apoE2 tended to bind less than apoE3 and apoE4, there were no significant differences in rate and equilibrium constants of binding among the apoE isoforms in the lipidated state. Discoidal apoE3-phospholipid complexes using a substitution mutant (K143R/K146R) showed similar binding affinity to wild type apoE3, indicating that basic residue specificity is not required for the effective binding of apoE to heparin, unlike its binding to the low density lipoprotein receptor. In addition, disruption of the alpha-helix structure in the apoE heparin binding region led to an increased favorable free energy of binding in the second step, suggesting that hydrophobic interactions contribute to the second binding step. Based on these results, it seems that cell-surface heparan sulfate proteoglycan localizes apoE-enriched remnant lipoproteins to the vicinity of receptors by fast association and dissociation.  相似文献   

8.
Atherosclerosis is initiated when lipoproteins bind to proteoglycans (PGs) in arterial walls. The binding is mediated by apolipoprotein apoB-100 and/or apoE, both of which have binding affinity toward heparin. We developed covalently bound heparin coatings for APTES-modified silica capillaries and SiO(2) chips and carried out capillary electrochromatography (CEC) and quartz crystal microbalance (QCM) studies on the interactions of heparin with selected peptide fragments of apoB-100 and apoE and, for CEC, also with low- and high-density lipoproteins (LDL and HDL), the latter with and without apoE. The peptides are known to mediate interactions of HDL and LDL with arterial PGs. Interactions and affinities were expressed in CEC as retention factors and reduced mobilities and in continuous flow QCM techniques as affinity constants. Both techniques showed heparin interactions to be stronger with apoB-100 peptide than with apoE peptide fragment, and they confirmed that the sulfate groups in heparin play an especially important role in interactions with apoB-100 peptide fragments. In addition, CEC confirmed the importance of sulfate groups of heparin in interactions between heparin and LDL and between heparin and apoE-containing HDL. CEC and QCM acted as excellent platforms to mimic these biologically important interactions, with small sample and reagent consumption.  相似文献   

9.
Recent studies have shown that the lipidation and assembly state of apolipoprotein E (apoE) determine receptor recognition and amyloid-beta peptide (Abeta) binding. We previously demonstrated that apoE secreted by HEK cells stably expressing apoE3 or apoE4 (HEK-apoE) binds Abeta and inhibits Abeta-induced neurotoxicity by an isoform-specific process that requires apoE receptors. Here we characterized the structure of HEK-apoE assemblies and determined their receptor binding specificity. By chromatography, HEK-apoE elutes in high molecular mass fractions and is the size of plasma HDL, consistent with a multiprotein assembly. No lipid was associated with these apoE assemblies. Several methods for analyzing receptor binding indicate that HEK-apoE is a ligand for low-density lipoprotein (LDL) receptor-related protein (LRP) but not the LDL receptor. This suggests that self-assembly of apoE may induce a functional conformation necessary for binding to LRP. Our results indicate that, in addition to lipid content, the assembly state of apoE influences Abeta binding and receptor recognition.  相似文献   

10.
Croy JE  Shin WD  Knauer MF  Knauer DJ  Komives EA 《Biochemistry》2003,42(44):13049-13057
The three complete human LDL receptor homology regions of the LDL receptor-related protein (sLRP2, sLRP3, and sLRP4) have been expressed in Pichia pastoris SMD1168 with constitutive coexpression of the receptor-associated protein (RAP). Each sLRP was purified to homogeneity after deglycosylation using a combination of anion-exchange and size exclusion chromatography. Mass spectrometry and N-terminal sequencing confirmed the identity of each fragment at purified yields of several milligrams per liter. Despite the large number of disulfide linkages and glycosylation sites in each LDL receptor homology region (sLRP), all were shown to be competent for binding to several LRP1 ligands. Each sLRP also bound human RAP, which is thought to be a generalized receptor antagonist, in solution-binding experiments. As expected, sLRP2 bound the receptor-binding domain of alpha(2)-macroglobulin (residues 1304-1451). All three sLRPs bound human apolipoprotein-enriched beta very low density lipoprotein, the canonical ligand for this receptor. All three sLRPs also bound lactoferrin and thrombin-protease nexin 1 complexes. Only sLRP4 bound thrombin-antithrombin III complexes. The results show that binding-competent LDL receptor homology regions (sLRPs) can be produced in high yield in P. pastoris and readily purified. Each sLRP has binding sites for multiple ligands, but not all ligand binding could be competed by RAP.  相似文献   

11.
Glycosaminoglycan-lipoprotein interaction   总被引:1,自引:0,他引:1  
Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.  相似文献   

12.
Previous studies suggest that during nerve regeneration apoE acts as a lipid transport protein that assists in the rapid initial extension of axons and then in their myelination. To determine whether apoE and/or apoE-containing lipoproteins can modulate axon growth, we assessed their effect on the out-growth of neurites from neurons in mixed cultures of fetal rabbit dorsal root ganglion cells in vitro. Incubation with beta-very low density lipoprotein (beta-VLDL) particles, which are rich in apoE and cholesterol, increased neurite outgrowth and branching. Unesterified cholesterol added to the cultures had a similar, but less pronounced, effect. These data suggest that cholesterol might be the component responsible for the enhanced neurite growth. In contrast, purified, lipid-free apoE added to the cultures reduced neurite branching. Neurite branching was also reduced when purified apoE was added along with beta-VLDL or cholesterol; however, the striking finding was that under these conditions the neurites extended farther from the neuronal cell body. Dorsal root ganglion cells were examined for the presence of receptors for native and apoE-enriched beta-VLDL. Immunocytochemistry, ligand blots, 45Ca2+ blots, and studies of the interaction of the cells with fluorescent lipoproteins provided evidence of two types of receptors for apoE-containing lipoproteins on neurons: the low density lipoprotein (LDL) receptor, which binds native beta-VLDL, and the LDL receptor-related protein, which binds apoE-enriched beta-VLDL. These findings indicate that apoE may play two complementary roles in neurite outgrowth. When complexed with lipoproteins, apoE stimulates neurite growth by the receptor-mediated delivery of cholesterol and perhaps other components necessary for neurite outgrowth. When apoE as a free protein is added together with apoE-containing lipoproteins, apoE decreases neurite branching and promotes neurite extension away from the cell body. These actions, which would be complementary in promoting target-directed nerve growth in vivo, provide the first direct evidence that apoE and apoE-containing lipoproteins can modulate the outgrowth of neuronal processes.  相似文献   

13.
The high density lipoprotein receptor, scavenger receptor class B type I (SR-BI), recognizes lipid-bound apolipoprotein A-I (apoA-I) and other apolipoproteins. Here, we have used large scale cultures of apoE-expressing cells to purify apoE and prepare apoE containing reconstituted discoidal 1-palmitoyl-2-oleoyl-l-phosphatidylcholine (POPC)-apoE particles. These particles have been used to examine their binding to wild-type and mutant forms of SR-BI expressed in transfected ldlA-7 cells. Specific binding to SR-BI was determined by subtracting from the total binding, nonspecific values measured using either control untransfected ldlA-7 cells or by inhibiting SR-BI-mediated binding with a high titer antireceptor-blocking antibody. POPC-apoE particles generated using apoE2, apoE3, apoE4, or the carboxyl-terminally truncated forms apoE165, apoE202, apoE229, and apoE259 all bound tightly to wild-type SR-BI with similar affinities (K(d) = 35-45 microg/ml). Binding was nearly abolished in a cell line expressing the ldlA (Q402R/Q418R) double mutant form of SR-BI that is unable to bind native high density lipoprotein but binds low density lipoprotein normally. The findings establish that apoE is a ligand for SR-BI and that the receptor binding domain is located in the amino-terminal 1-165-region of the protein. SR-BI-apoE interactions may contribute to cholesterol homeostasis in tissues and cells expressing SR-BI that are accessible to apoE-containing lipoproteins.  相似文献   

14.
This study showed that synthetic peptides containing either a single copy or tandem repeat of the receptor binding domain sequence of apolipoprotein (apo) E, or a peptide containing its C-terminal heparin binding domain, apoE-(211-243), were all effective inhibitors of platelet-derived growth factor (PDGF)-stimulated smooth muscle cell proliferation. In contrast, only the peptide containing a tandem repeating unit of the receptor binding domain sequence of apoE, apoE-(141-155)(2), was capable of inhibiting PDGF-directed smooth muscle cell migration. Peptide containing only a single unit of this sequence, apoE-(141-155), or the apoE-(211-243) peptide were ineffective in inhibiting PDGF-directed smooth muscle cell migration. Additional experiments showed that reductively methylated apoE, which is incapable of receptor binding yet retains its heparin binding capability, was equally effective as apoE in inhibiting PDGF-stimulated smooth muscle cell proliferation. However, reductively methylated apoE was unable to inhibit smooth muscle cell migration toward PDGF. Additionally, the receptor binding domain-specific apoE antibody 1D7 also mitigated the anti-migratory properties of apoE on smooth muscle cells. Finally, pretreatment of cells with heparinase failed to abolish apoE inhibition of smooth muscle cell migration. Taken together, these data documented that apoE inhibition of PDGF-stimulated smooth muscle cell proliferation is mediated by its binding to heparan sulfate proteoglycans, while its inhibition of cell migration is mediated through apoE binding to cell surface receptors.  相似文献   

15.
Cell adhesion to extracellular matrix components such as fibronectin has a complex basis, involving multiple determinants on the molecule that react with discrete cell surface macromolecules. Our previous results have demonstrated that normal and transformed cells adhere and spread on a 33-kD heparin binding fragment that originates from the carboxy-terminal end of particular isoforms (A-chains) of human fibronectin. This fragment promotes melanoma adhesion and spreading in an arginyl-glycyl-aspartyl-serine (RGDS) independent manner, suggesting that cell adhesion to this region of fibronectin is independent of the typical RGD/integrin-mediated binding. Two synthetic peptides from this region of fibronectin were recently identified that bound [3H]heparin in a solid-phase assay and promoted the adhesion and spreading of melanoma cells (McCarthy, J. B., M. K. Chelberg, D. J. Mickelson, and L. T. Furcht. 1988. Biochemistry. 27:1380-1388). The current studies further define the cell adhesion and heparin binding properties of one of these synthetic peptides. This peptide, termed peptide I, has the sequence YEKPGSP-PREVVPRPRPGV and represents residues 1906-1924 of human plasma fibronectin. In addition to promoting RGD-independent melanoma adhesion and spreading in a concentration-dependent manner, this peptide significantly inhibited cell adhesion to the 33-kD fragment or intact fibronectin. Polyclonal antibodies generated against peptide I also significantly inhibited cell adhesion to the peptide, to the 33-kD fragment, but had minimal effect on melanoma adhesion to fibronectin. Anti-peptide I antibodies also partially inhibited [3H]heparin binding to fibronectin, suggesting that peptide I represents a major heparin binding domain on the intact molecule. The cell adhesion activity of another peptide from the 33-kD fragment, termed CS1 (Humphries, M. J., A. Komoriya, S. K. Akiyama, K. Olden, and K. M. Yamada. 1987. J. Biol. Chem., 262:6886-6892) was contrasted with peptide I. Whereas both peptides promoted RGD-independent cell adhesion, peptide CS1 failed to bind heparin, and exogenous peptide CS1 failed to inhibit peptide I-mediated cell adhesion. The results demonstrate a role for distinct heparin-dependent and -independent cell adhesion determinants on the 33-kD fragment, neither of which are related to the RGD-dependent integrin interaction with fibronectin.  相似文献   

16.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

17.
Alpha(2)-macroglobulin (alpha(2)M) and its receptor, low density lipoprotein receptor-related protein (LRP), function together to facilitate the cellular uptake and degradation of beta-amyloid peptide (Abeta). In this study, we demonstrate that Abeta binds selectively to alpha(2)M that has been induced to undergo conformational change by reaction with methylamine. Denatured alpha(2)M subunits, which were immobilized on polyvinylidene difluoride membranes, bound Abeta, suggesting that alpha(2)M tertiary and quaternary structure are not necessary. To determine whether a specific sequence in alpha(2)M is responsible for Abeta binding, we prepared and analyzed defined alpha(2)M fragments and glutathione S-transferase-alpha(2)M peptide fusion proteins. A single sequence, centered at amino acids (aa) 1314-1365, was identified as the only major Abeta-binding site. Importantly, Abeta did not bind to the previously characterized growth factor-binding site (aa 718-734). Although the Abeta binding sequence is adjacent to the binding site for LRP, the results of experiments with mutated fusion proteins indicate that the two sites are distinct. Furthermore, a saturating concentration of Abeta did not inhibit LRP-mediated clearance of alpha(2)M-MA in mice. Using various methods, we determined that the K(D) for the interaction of Abeta with its binding site in the individual alpha(2)M subunit is 0.7-2.4 microm. The capacity of alpha(2)M to bind Abeta and deliver it to LRP may be greater than that predicted by the K(D), because each alpha(2)M subunit may bind Abeta and the bound Abeta may multimerize. These studies suggest a model in which alpha(2)M has three protein interaction sites with distinct specificities, mediating the interaction with Abeta, growth factors, and LRP.  相似文献   

18.
Since an apolipoprotein E4 (ApoE4) peptide composed of the low-density lipoprotein (LDL) receptor-related protein (LRP)-binding domain [ApoE4(141-149)(2) or ApoE(141-155)(2)] exerts neurotoxicity in primary neurons and neuronal cell lines, it has been controversial whether these effects are mediated by LRP. Here, we examined whether ApoE4(141-149)(2)-induced toxicity is mediated by LRP in a neuronal cell system where ApoE4 toxicity is mediated by LRP: serum-deprived F11 neuronal cells. In these cells, where ApoE4 exerted toxicity by apoptosis in a manner sensitive to both caspase inhibitors and pertussis toxin (PTX), ApoE4(141-149)(2) also caused cell death by apoptosis but in a caspase-inhibitor-resistant, PTX-resistant manner. ApoE4(141-149)(2)-induced death was not inhibited by antisense oligonucleotides to LRP. Therefore, we conclude that ApoE4(141-149)(2) is able to exert neurotoxicity without involving LRP.  相似文献   

19.
20.
The beta-VLDL receptor pathway of murine P388D1 macrophages   总被引:1,自引:0,他引:1  
Very low density lipoproteins Sf 100-400 (VLDL1) from hypertriglyceridemic (HTG) subjects and chylomicrons cause receptor-mediated lipid engorgement in unstimulated macrophages in vitro via the beta-VLDL receptor pathway. We now report that the murine macrophage P388D1 cell line possesses the characteristics of the beta-VLDL receptor pathway observed previously in freshly isolated resident murine peritoneal macrophages or human monocyte-macrophages. HTG-VLDL1 isolated from the plasma of subjects with hypertriglyceridemia types 3, 4, and 5 interact with P388D1 macrophages in a high-affinity, curvilinear manner. beta-VLDL, HTG-VLDL1, chylomicrons, and thrombin-treated HTG-VLDL1 (which do not bind to the LDL receptor) compete efficiently and similarly for the uptake and degradation of HTG-VLDL1. LDL and acetyl LDL do not compete, indicating that uptake of HTG-VLDL1 is via neither the LDL receptor nor the acetyl LDL receptor. Binding of thrombin-treated HTG-VLDL1 to the beta-VLDL receptor indicates that the thrombin-accessible apoE, which is absolutely required for interaction of HTG-VLDL Sf greater than 60 with the LDL receptor, is not required for binding to the beta-VLDL receptor. The uptake and degradation of 125I-labeled HTG-VLDL1 is suppressed up to 80-90% by preincubation of the cells with sterols, acetyl LDL, or beta-VLDL, indicating that this process is not via the irrepressible chylomicron remnant (apoE) receptor. Chylomicrons, HTG-VLDL1, and thrombin-treated HTG-VLDL1-but not normal VLDL1, beta-VLDL, LDL, or acetyl LDL-produce massive triglyceride accumulation (10-20-fold mass increases in 4 hr) in P388D1 macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号