首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
A novel nuclease activity have been detected at three specific sites in the chromatin of the spacer region flanking the 5'-end of the ribosomal RNA gene from Tetrahymena. The endogenous nuclease does not function catalytically in vitro, but is in analogy with the DNA topoisomerases activated by strong denaturants to cleave DNA at specific sites. The endogenous cleavages have been mapped at positions +50, -650 and -1100 relative to the 5'-end of the pre-35S rRNA. The endogenous cleavage sites are associated with micrococcal nuclease hypersensitive sites and DNase I hypersensitive regions. Thus, a single well-defined micrococcal nuclease hypersensitive site is found approximately 130 bp upstream from each of the endogenous cleavages. Clusters of defined sites, the majority of which fall within the 130 bp regions defined by vicinal micrococcal nuclease and endogenous cleavages, constitute the DNase I hypersensitive regions.  相似文献   

4.
5.
Summary Isolated nuclei of Saccharomyces cerevisiae were incubated with five restriction nucleases. Out of the twenty-one recognition sequences for these nucleases in the centromere region of chromosome XIV, only five are accessible to cleavage. These sites map 11 by and 74 by to the left and 27 bp, 41 by and 290 by to the right, respectively, of the boundaries of the 118 by functional CEN14 DNA sequence. The distance between the sites accessible to cleavage and closest to CEN14 is 156 bp, suggesting this is the maximal size of DNA protected in CEN14 chromatin. The DNA in CEN14 chromatin protected against cleavage with DNase I and micrococcal nuclease overlaps almost completely with this region. Hypersensitive regions flanking both sides are approximately 60 by long. Analyses of other S. cerevisiae centromeres with footprinting techniques in intact cells or nucleolytic cleavages in isolated nuclei are discussed in relation to our results. We conclude that structural data of chromatin obtained with restriction nucleases are reliable and that the structure of CEN14 chromatin is representative for S. cerevisiae centromeres.  相似文献   

6.
7.
The PRL gene is expressed at a high basal level in rat pituitary tumor GH3 cells, and this basal level enhancement of PRL gene expression is maintained through a Ca2+-calmodulin-dependent mechanism. We have now examined whether the enzyme, DNA topoisomerase II, which has been shown to be phosphorylated by a Ca2+-calmodulin-dependent protein kinase, plays a role in the Ca2+-calmodulin-dependent basal level enhancement of PRL gene expression. The topoisomerase II inhibitor, novobiocin, at concentrations in the range of 35-140 microM, effectively blocked the ability of Ca2+ to increase PRL mRNA levels. Examination of the effects of novobiocin on the levels of protein synthesis, glucose-regulated protein (GRP) 78 mRNA, histone 3 mRNA, and 18S ribosomal RNA indicated that the drug selectivity inhibited PRL gene expression. Two other topoisomerase II inhibitors, m-AMSA and VM26, also diminished the Ca2+-induced levels of PRL mRNA at concentrations (100-400 nM) that did not lower total mRNA levels. We then examined whether topoisomerase II interacted nonrandomly with DNA from the 5' transcribed and 5'-flanking region of the rat PRL gene by in vitro mapping of topoisomerase II DNA cleavage sites. In initial assays with a 10.5 kilobase (kb) PRL genomic DNA fragment containing 3.5 kb of 5'-transcribed DNA and 7 kb of 5'-flanking DNA, we detected 4 major cleavage sites in the following regions: site 1, +1500 to +1600; site 2, +1 to -100; site 3, -1200 to -1300; and site 4, -2900 to -3000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
It is well known that treatment of DNA-topoisomerase complexes with SDS induces cleavage of the DNA by trapping a reactive intermediate in which the topoisomerase is covalently linked to the terminal phosphates of the cut DNA. I have used this technique to examine potential topoisomerase binding sites in the histone gene chromatin of Drosophila Kc cells. Treatment of Kc nuclei with SDS induces Mg++-dependent DNA cleavage near the borders of two nuclease-hypersensitive sites located 5' and 3' of histone H4. It is likely that the SDS-induced cleavage at these hypersensitive sites is due to a topoisomerase because protein becomes tightly bound to the ends of the cleaved DNA fragments. Preliminary experiments suggest that a type II topoisomerase may be responsible for the cleavage.  相似文献   

9.
We have mapped DNase I-hypersensitive sites and topoisomerase II (topo II) sites in the chicken beta-globin locus, which contains four globin genes (5'-rho-beta H-beta A-epsilon-3'). In the 65 kilobases (kb) mapped, 12 strong hypersensitive sites were found clustered within the 25-kb region from 10 kb upstream of rho to just downstream of epsilon. The strong sites were grouped into several classes based on their tissue distribution, developmental pattern, and location. (i) One site was present in all cells examined, both erythroid and nonerythroid. (ii) Three sites, located upstream of the rho-globin gene, were present at every stage of erythroid development, but were absent from nonerythroid cells. (iii) Four sites at the 5' ends of each of the four globin genes were hypersensitive only in the subset of erythroid cells that were transcribing or had recently transcribed the associated gene. (iv) Another three sites, whose pattern of hypersensitivity also correlated with expression of the associated gene, were found 3' of rho, beta H, and epsilon. (v) A site 3' of beta A and 5' of epsilon was erythroid cell specific and present at all developmental stages, presumably reflecting the activity of this enhancer throughout erythroid development. We also mapped the topo II sites in this locus, as determined by teniposide-induced DNA cleavage. All strong teniposide-induced cleavages occurred at DNase I-hypersensitive sites, while lesser amounts of cleavage were observed in transcribed regions of DNA. Most but not all of the DNase I-hypersensitive sites were topo II sites. These data are consistent with the hypothesis that, in vivo, topo II preferentially acts on nucleosome-free regions of DNA but suggest that additional topo II regulatory mechanisms must exist.  相似文献   

10.
Y Tsujimoto  Y Suzuki 《Cell》1979,16(2):425-436
  相似文献   

11.
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.  相似文献   

12.
Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3'- or the 5'-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3' end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

13.
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration.  相似文献   

14.
Single-strand DNA cleavages by eukaryotic topoisomerase II   总被引:7,自引:0,他引:7  
A new purification method for eukaryotic type II DNA topoisomerase (EC 5.99.1.3) is described, and the avian enzyme has been purified and characterized. An analysis of the cleavage reaction has revealed that topoisomerase II can be trapped as a DNA-enzyme covalent complex containing DNA with double-stranded and single-stranded breaks. The data indicate that DNA cleavage by topoisomerase II proceeds by two asymmetric single-stranded cleavage and resealing steps on opposite strands (separated by 4 bp) with independent probabilities of being trapped upon addition of a protein denaturant. Single-strand cleavages were directly demonstrated at both strong and weak topoisomerase II sites. Thus, a match to the vertebrate topoisomerase II consensus sequence (sequence; see text) (N is any base, and cleavage occurs between -1 and +1) [Spitzner, J.R., & Muller, M.T. (1988) Nucleic Acids Res. 16, 5533-5556)] does not predict whether a cleavage site will be single stranded or double stranded; however, sites cleaved by topoisomerase II that contain two conserved consensus bases (G residue at +2 and T at +4) generally yield double-strand cleavage whereas recognition sites lacking these two consensus elements yield single-strand cleavages. Finally, single-strand cleavages with topoisomerase II do not appear to be an artifact caused by damaged enzyme molecules since topoisomerase II in freshly prepared, crude extracts also shows the property of single-strand cleavages.  相似文献   

15.
16.
DNA derived from the 5' spacers of the rRNA genes from Tetrahymena has unusual electrophoretic properties. These properties made it possible to devise a simple electrophoretic procedure for isolating specific rDNA spacer fragments from preparations of total nuclear DNA, enabling us to study DNA modifications at the level of unfractionated nuclei. We have employed the method to study the distribution of topoisomerase I binding sites on the r-chromatin (ribosomal chromatin) of Tetrahymena at the DNA sequence level. The presence of topoisomerase I in situ was detected by its ability to introduce single-strand cleavages into DNA. The positions of the cleavages were determined on DNA sequencing gels after isolation of the fragments. Topoisomerase I binding in r-chromatin is sequence specific and cleavage is confined to a 16 base-pair conserved sequence element previously determined to be a high-affinity binding site for topoisomerase I in vitro. The high degree of sequence specificity may be of important functional significance, as we find a similar sequence specificity with enzymes isolated from five evolutionarily distant species, indicating that preference for the 16 base-pair element is an intrinsic property of eukaryotic type I topoisomerases.  相似文献   

17.
Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II   总被引:24,自引:0,他引:24  
A Udvardy  P Schedl  M Sander  T S Hsieh 《Cell》1985,40(4):933-941
We have examined the long-range distribution of double-stranded DNA cleavage sites for Drosophila melanogaster topoisomerase II. These studies reveal a novel partitioning of preferred topoisomerase II cleavage sites. In the eukaryotic DNAs examined, major cleavage sites were typically found in nontranscribed spacer segments and close to the 5' and 3' boundaries of genes. In contrast, there were few if any prominent cleavage sites within genes. In addition, most of the major topoisomerase II cleavage sites closely corresponded to naked DNA hypersensitive sites for the prokaryotic enzyme, micrococcal nuclease.  相似文献   

18.
19.
The 5'-boundary region of the human beta-globin locus control region hypersensitive site-2 (HS-2) was examined for protein-DNA interactions. The HS-2 is an erythroid specific DNase I hypersensitive site that extends for approximately 600 bp. Erythroid K562 cells and non-erythroid HeLa cells were damaged by bleomycin and hedamycin--these agents are able to "footprint" nucleosome cores and proteins bound to DNA. The fragments generated by DNA damage were amplified by the ligation-mediated polymerase chain reaction with primers specific for the 5'-boundary region of HS-2 and examined at base pair resolution on DNA sequencing gels. The intensity of damage in intact cells was compared with that in purified DNA. The comparison between intact cells and purified DNA revealed a protected region of 226 bp with bleomycin and 182 bp with hedamycin in K562 cells. The length of the protected region was consistent with the presence of a nucleosome core. We postulate that an erythroid-specific protein binds next to the positioned nucleosome at the boundary of HS-2 to prevent sliding of the nucleosome into the hypersensitive site--this would also account for the large size of the protected region. HeLa cells (lacking a hypersensitive site in the beta-globin cluster) did not have an area of protection in this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号