首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic and regulatory properties of NADP-isocitrate dehydrogenase (NADP-IDH) and aspartate aminotransferase (AsAT) responsible for 2-oxoglutarate metabolism in the cytoplasm and mitochondria of rat liver were studied. Based on the subcellular location of these enzymes and their kinetic parameters (Km, Ksi) obtained with highly purified enzyme preparations, it is suggested that synthesis of 2-oxoglutarate should be mainly determined by cytoplasmic NADP-IDH (86% of the total activity in the cell), whereas its utilization should depend on cytoplasmic AsAT (78% of the total activity). AsAT from the rat liver was specified by substrate inhibition and also by changes in the enzyme affinity for the substrates under the influence of some intermediates of the tricarboxylic acid cycle: isocitrate, succinate, fumarate, and citrate. Key intermediates of nitrogen metabolism (glutamate, glutamine, and aspartate) are involved in the regulation of NADP-IDH and AsAT. These enzymes are regulated oppositely, and the catalytic activity of one enzyme can be stimulated concurrently with a decrease in the activity of the other. Obviously, carbon and nitrogen metabolism in the rat liver can be controlled through redistribution of 2-oxoglutarate between different metabolic processes via regulatory mechanisms influencing differently located forms of NADP-IDH and AsAT.  相似文献   

2.
The addition of steroids with aflatoxin B1 (AFB1) to rat liver cells in culture has been shown to increase the toxin's inhibitory action on growth and protein synthesis. In contrast the inhibition of RNA synthesis by AFB1 was unaffected. The steroid potentiates the direct action of AFB1 at initiation of translation.  相似文献   

3.
A single administration of a low dose of cortisone acetate (0.2 mg/100 g) into adrenalectomized rats reduces the cell-free protein synthesizing activity of isolated total liver polysomes by 60 % after 90 min. DBcAMP also inhibits markedly the protein synthesizing activity but its effect is due to an inactivation of soluble fraction. Combined administration of both drugs yields polysomes active more than twice than those of untreated control. Inhibition by the glucocorticoid was restricted only to the membrane-bound polysomes.  相似文献   

4.
The endogenous Ca2+, Mg2+-dependent endonuclease activity in nuclei from livers of rats receiving daily injections of the synthetic glucocorticoid dexamethasone was examined with respect to the production of both single and double strand breaks in chromatin DNA. The ability to form single strand breaks was measured by means of a nick translation assay and double strand breaks by following the appearance of nucleosomal ladders. A fall in the activity causing double strand breaks to approximately 50 per cent of the control value was apparent at 12 h after the first injection of the steroid. A fall of 25–30 per cent was also observed in the nicking activity but this was not apparent until 24 h after the first steriod injection. Both endonuclease activities remained at these lower levels for the remainder of the period of treatment. Nuclear extracts from dexamethasone-treated rats also showed a reduced ability to produced nucleosomal ladders when incubated with rat muscle nuclei, indicating that the inhibition observed in intact nuclei from treated animals was independent of any changes in chromatin structure. On the other hand the nick translation activity of the two extracts was the same when calf thymus DNA was used as the substrate suggesting that steriod-induced alterations in chromatin structure may be a critical factor in the reduced level of this activity observed in intact nuclei.  相似文献   

5.
Expression of the hepatic enzyme tyrosine aminotransferase was analyzed in the perinatal period of development in the rat, when this expression undergoes significant changes associated with hepatocyte differentiation. In late prenatal liver both enzyme and functional mRNA gene products are present at levels 10- to 15-fold below those in the fully differentiated adult liver. This low level of expression in fetal liver is refractory to induction by glucocorticoids, but both gene products are increased to a limited extent by cyclic AMP. This induction by cyclic AMP (cAMP) does not confer glucocorticoid-responsiveness on expression. By 3 hr after birth both functional mRNA and enzyme levels are significantly increased, an increase which continues until a peak is reached at 12 hr that is appreciably above the adult levels. Both gene products then decline until adult levels are reached by 24 hr. The postnatal shift in aminotransferase expression is accompanied by acquisition of the capacity to respond to glucocorticoids. Treatment of newborns with an antiglucocorticoid steroid or with glucose suppresses the postnatal overshoot of expression, but neither treatment affects the increase from fetal to adult levels of expression. The results indicate that prior to birth, expression of the aminotransferase gene is partially repressed, a repression that is lifted essentially immediately upon birth. The hormones capable of inducing aminotransferase synthesis have no apparent necessary role in this process.  相似文献   

6.
7.
8.
Insulin stimulates a 2-fold increase in the amount of tyrosine aminotransferase and a 5–10-fold increase in the rate of amino acid transport in dexamethasone-treated rat hepatoma cells. In order to determine whether these effects are mediated by insulin receptors or receptors for insulin-like growth factors, we have examined the binding of 125I-labeled insulin and 125I-labeled multiplication-stimulating activity, a prototype insulin-like growth factor, and compared the biological effects of these polypeptides. Insulin and multiplication-stimulating activity cause an identical increase in transaminase activity and transport velocity; half-maximal biological effects were observed at 35 ng/ml (5.5 nM) insulin and 140 ng/ml multiplication-stimulating activity. The hepatoma cells display typical insulin receptors of appropriate specificity; half-maximal displacement of tracer insulin binding occured at 33 ng/ml unlabeled insulin, but only at 2500 ng/ml unlabeled multiplication-stimulating activity. Specific multiplication-stimulating activity receptors also were demonstrated with which insulin did not interact even at 10 μg/ml. Half-maximal displacement of tracer multiplication-stimulating activity occured at 200 ng/ml unlabeled multiplication-stimulating activity. We conclude that insulin cannot act via the multiplication-stimulating activity receptor and presumably acts via typical insulin receptors. The effects of multiplication-stimulating activity on enzyme induction and amino acid transport are probably mediated primarily via the multiplication-stimulating activity receptor.  相似文献   

9.
The alteration of calcium content, Ca2+-ATPase activity, DNA content and DNA fragmentation in the nuclei of regenerating rat liver was investigated. Liver was surgically removed about 70% of that of sham-operated rats. the reduced liver weight by partial hepatectomy was completely restored at 3 days after the surgery. Regenerating liver significantly increased Ca2+-ATPase activity and DNA content in the nuclei between 1 and 5 days after hepatectomy. The nuclear calcium content was clearly increased from 2 days after hepatectomy. The increase of Ca2+-ATPase activity in regenerating liver was clearly inhibited by the presence of trifluoperazine (10 M), staurosporine (2.5 M) and dibucaine (10 M), which are inhibitors of calmodulin and protein kinase, in the enzyme reaction mixture. However, the nuclear enzyme activity in normal rat liver was not significantly altered by these inhibitors. Meanwhile, the increase of nuclear DNA content in regenerating liver was completely blocked by the administration of trifluoperazine (2.5 mg/100 g body weight), suggesting an involvement of calmodulin. Now, the nuclear DNA fragmentation was significantly decreased in regenerating liver, suggesting that this decrease is partly contributed to the increase in nuclear DNA content. The present study clearly demonstrates that regenerating liver enhances nuclear Ca2+-ATPase activity and induces a corresponding elevation of nuclear calcium content. This Ca2+-signaling system may be involved in the regulation of nuclear DNA functions in regenerating rat liver.  相似文献   

10.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

11.
Detailed kinetic studies were performed in order to determine the role of the single cysteine residue in the desulfonation reaction catalyzed by SsuD. Mutation of the conserved cysteine at position 54 in SsuD to either serine or alanine had little effect on FMNH2 binding. The kcat/Km value for the C54S SsuD variant increased 3-fold, whereas the kcat/Km value for C54A SsuD decreased 6-fold relative to wild-type SsuD. An initial fast phase was observed in kinetic traces obtained for the oxidation of flavin at 370 nm when FMNH2 was mixed against C54S SsuD (kobs, 111 s− 1) in oxygenated buffer that was 10-fold faster than wild-type SsuD (kobs, 12.9 s− 1). However, there was no initial fast phase observed in similar kinetic traces obtained for C54A SsuD. This initial fast phase was previously assigned to the formation of the C4a-(hydro)peroxyflavin in studies with wild-type SsuD. There was no evidence for the formation of the C4a-(hydro)peroxyflavin with either SsuD variant when octanesulfonate was included in rapid reaction kinetic studies, even at low octanesulfonate concentrations. The absence of any C4a-(hydro)peroxyflavin accumulation correlates with the increased catalytic activity of C54S SsuD. These results suggest that the conservative serine substitution is able to effectively take the place of cysteine in catalysis. Conversely, decreased accumulation of the C4a-(hydro)peroxyflavin intermediate with the C54A SsuD variant may be due to decreased activity. The data described suggest that Cys54 in SsuD may be either directly or indirectly involved in stabilizing the C4a-(hydro)peroxyflavin intermediate formed during catalysis through hydrogen bonding interactions.  相似文献   

12.
Rat liver and Trypanosoma cruzi tyrosine aminotransferases (TATs) share over 40% sequence identity, but differ in their substrate specificities. To explore the molecular features related to these differences, comparative mutagenesis studies were conducted on full length T. cruzi TAT and N-terminally truncated rat TAT recombinant enzymes. The functionality of Arg315 and Arg417 in rat TAT was investigated for comparison with the conserved Arg292 and Arg386 in aspartate and bacterial aromatic aminotransferases (ASATs and ARATs). The rat TAT Arg315Lys variant remained fully active indicating that, as in T. cruzi TAT and contrary to subfamily Ialpha aminotransferases, this residue is not critical for activity. In contrast, the Arg417Gln variant was inactive. The catalytic relevance of the putative rat TAT active site residues Asn54 and Arg57, which are strictly conserved in TATs (Asn17 and Arg20 in T. cruzi TAT) but differ in ASATs and ARATs, was also explored. The substitutions Arg57Ala and Arg57Gln abolished enzymatic activity of these mutants. In both variants, spectral studies demonstrated that aromatic but not dicarboxylic substrates could efficiently bind in the active site. Thus, Arg57 appears to be functionally equivalent to Arg292 of ASATs and ARATs. Asn54 also appears to be involved in the catalytic mechanism of rat TAT since its exchange for Ser lowered the k(cat)/K(m) ratios towards its substrates. Mutation of the analogous residues in T. cruzi TAT also lowered the catalytic efficiencies (k(cat)/K(m)) of the variants substantially. The results imply that the mamalian TAT is more closely related to the T. cruzi TAT than to ASATs and ARATs.  相似文献   

13.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

14.
Summary Rat liver epithelial cell lines, growing in a serum-supplemented medium, synthesize and secrete into the culture medium the third component of complement (C3). We studied the regulation of C3 production in this system. We found that human peripheral blood mononuclear leukocytes in culture released one or more soluble factors which stimulated rat liver epithelial cells to produce increased quantitites of C3. This stimulting effect was strongly enhanced when the mononuclear cell cultures were treated with phytohemagglutinin, a T-lymphocyte mitogen. The factor(s) failed to enhance C3 biosynthesis by rat dermal fibroblasts, which are known to produce this protein. This reveals a tissue-specific differential response between the fibroblasts and the liver epithelial cells. The physical and chemical characteristics, such as heat sensitivity, 2.8M ammonium sulphate precipitation, and lower activity after digestion by proteases unambiguously indicate that the effector molecules are proteins. When the crude supernatant of mononuclear leukocytes was fractionated by gel filtration, the stimulating factor(s) eluted as two peaks with apparent molecular weight of 25 to 60 and 15 to 20 kdalton, respectively. As to the cellular origin of the C3-stimulating factor(s), several observations were made: (a) in separate cultures containing either T-cells or monocyte-enriched populations from the same sample of blood mononuclear cells, no activity was detected in the presence or absence of phytohemagglutinin, (b) conditioned media from each of these cultures could not substitute for the corresponding intact cell populations, and (c) the addition of purified T-cells to the monocyte-enriched population in the presence of phytohemagglutinin restored the production of the stimulating activity by the mixed culture. Finally, experiments were carried out to verify whether monokine interleukin 1 affects the hepatic C3 biosynthesis. It was demonstrated that interleukin 1 enhanced this biosynthesis, but could not completely substitute for conditioned medium from stimulated mononuclear cells.  相似文献   

15.
We synthesized analogs modified in the ribose unit (ribose linked to N1 of adenine) of cyclic ADP-ribose (cADPR), a Ca2+-mobilizing second messenger. The biological activities of these analogs were determined in NG108-15 neuroblastoma x glioma hybrid cells that were pre-loaded with fura-2 acetoxymethylester and subjected to whole-cell patch-clamp. Application of the hydrolysis-resistant cyclic ADP-carbocyclic-ribose (cADPcR) through patch pipettes potentiated elevation of the cytoplasmic free Ca2+ concentration ([Ca2+]i) at the depolarized membrane potential. The increase in [Ca2+]i evoked upon sustained membrane depolarization was significantly larger in cADPcR-infused cells than in non-infused cells and its degree was equivalent to or significantly greater than that induced by cADPR or beta-NAD+. 8-Chloro-cADPcR and two inosine congeners (cyclic IDP-carbocyclic-ribose and 8-bromo-cyclic IDP-carbocyclic-ribose) did not induce effects similar to those of cADPcR or cADPR. Instead, 8-chloro-cADPcR together with cADPR or cADPcR caused inhibition of the depolarization-induced [Ca2+]i increase as compared with either cADPR or cADPcR alone. These results demonstrated that our cADPR analogs have agonistic or antagonistic effects on the depolarization-induced [Ca2+]i increase and suggested the presence of functional reciprocal coupling between ryanodine receptors and voltage-activated Ca2+ channels via cADPR in mammalian neuronal cells.  相似文献   

16.
Impairment of oxygen supply occurs in many pathological situations. In the case of cancer, both chronic and acute hypoxic areas are found in the tumor. Tumor hypoxia is associated with poor clinical prognoses and is correlated with tumor growth and metastasis development.  相似文献   

17.
18.
Summary Protein phosphatase 2A1 was purified from rat skeletal muscle and used to produce antisera to the three subunits of the holoenzyme. Affinity purified antibodies specific for the subunits of the phosphatase enzyme were found to recognize the type 2A1 and 2A2 phosphatase from rat skeletal muscle, heart, liver, brain and erythrocytes and were used to investigate the effects of diabetes on the levels of this enzyme in liver and heart. Phosphorylase phosphatase assays coupled with immunoblot analysis of fractionated rat liver and heart cytosol from normal and diabetic animals show no apparent differences in the quantity or activity of these enzymes following the induction of alloxan diabetes. When considering these results and the normal physiological concentrations of known effectors of these enzymes, it is likely that protein phosphatase 2A1 and 2A2 are not responsible for the dephosphorylation of phosphorylase a under physiological conditions.  相似文献   

19.
A possible relationship between mitochondrial Mg2+ levels, structural configurations, and functional steady states has been studied in rat liver mitochondria. The results show that the concentration of mitochondrial Mg2+ in respiratory state 4 is definitely higher than in respiratory state 3. The metabolic transition from state 3 to state 4 and vice-versa is associated with reversible influx-efflux of about 10 nmol of Mg2+ per mg protein. The net uptake of this aliquot of Mg2+ is a necessary condition in order for the metabolic transition to state 4, both structurally and functionally, to occur. This process requires a threshold concentration of external Mg2+ greater than 5 mM. The phosphorylative mechanism does not appear to depend on the presence or absence of external Mg2+. The role of Mg2+ on the attainment and maintenance of the structural and functional steady state 4 seems to be correlated with its regulatory effect on the concentration of the mitochondrial Pi.  相似文献   

20.
The alteration of (Ca2+-Mg2+)-ATPase activity in the plasma membranes of regenerating rat liver after a partial hepatectomy was investigated. Liver was surgically removed about two thirds of that of sham-operated rats. The reduced liver weight by partial hepatectomy was restored about 50% at 24 h after the surgery, and it was completely restored at 72 h. Regenerating liver significantly increased calcium content and plasma membrane (Ca2+-Mg2+)-ATPase activity between 12–48 h after hepatectomy. Those increases were maximum at 24 h after the surgery. The regenerating liver-induced increase in hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity was completely abolished by the presence of anti-regucalcin IgG (1.0–4.0 g/ml). The regenerating liver-induced increase in hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity was clearly inhibited by N-ethylmaleimide (2.5 and 5.0 mM) addition into the enzyme reaction mixture. This NEM effect was also seen for the activatory effect with regucalcin (0.25 M) addition on the enzyme activity in the plasma membranes from normal rat liver. The endogenous regucalcin may play a cell physiological role in the activation of the plasma membrane (Ca2+-Mg2+)-ATPase to maintain the intracellular calcium level in regenerating rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号