首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal portion of phosphodiesterase (PDE) 3 was arbitrarily divided into region 1 (amino acids 1-300), which contains a large hydrophobic domain with six predicted transmembrane helices, and region 2 (amino acids 301-500), with a smaller hydrophobic domain ( approximately 50 residues). To analyze these regions, full-length human (H)PDE3A and mouse (M)PDE3B and a series of N-terminal truncated mutants were synthesized in Sf9 cells. Activities of HPDE3A, H3A-Delta189, MPDE3B, and M3B-Delta196, which retained all or part of the hydrophobic domain in region 1, were recovered almost entirely in particulate fractions. H3A-Delta321 and M3B-Delta302, containing region 2, were recovered essentially equally in particulate and cytosolic fractions. H3A-Delta397 and H3A-Delta457, lacking both hydrophobic domains, were predominantly cytosolic. H3A-Delta510 and M3B-Delta604, lacking both regions 1 and 2, were virtually completely cytosolic. M3B-Delta196 eluted as a large aggregated complex during gel filtration. With removal of greater amounts of N-terminal sequence, aggregation of PDE3 decreased, and H3A-Delta607, H3A-Delta721, and M3B-Delta604 eluted as dimers. Truncated HPDE3A proteins were more sensitive than full-length HPDE3A to inhibition by lixazinone. These results suggest that the hydrophobic domains in regions 1 and 2 contain structural determinants important for association of PDE3 with intracellular membranes, as well for self-association or aggregation during gel filtration and sensitivity to a specific inhibitor.  相似文献   

2.
Fractionation of 3T3-L1 adipocyte membranes revealed that PDE3B (phosphodiesterase 3B) was associated with PM (plasma membrane) and ER (endoplasmic reticulum)/Golgi fractions, that insulin-induced phosphorylation/activation of PDE3B was greater in internal membranes than PM fractions, and that there was no significant translocation of PDE3B between membrane fractions. Insulin also induced formation of large macromolecular complexes, separated during gel filtration (Superose 6 columns) of solubilized membranes, which apparently contain phosphorylated/activated PDE3B and signalling molecules potentially involved in its activation by insulin, e.g. IRS-1 (insulin receptor substrate-1), IRS-2, PI3K p85 [p85-subunit of PI3K (phosphoinositide 3-kinase)], PKB (protein kinase B), HSP-90 (heat-shock protein 90) and 14-3-3. Expression of full-length recombinant FLAG-tagged murine (M) PDE3B and M3BDelta604 (MPDE3B lacking N-terminal 604 amino acids) indicated that the N-terminal region of MPDE3B was necessary for insulin-induced activation and recruitment of PDE3B. siRNA (small interfering RNA) knock-down of PDE3B indicated that PDE3B was not required for formation of insulin-induced complexes. Wortmannin inhibited insulin-induced assembly of macromolecular complexes, as well as phosphorylation/activation of PKB and PDE3B, and their co-immunoprecipitation. Another PI3K inhibitor, LY294002, and the tyrosine kinase inhibitor, Genistein, also inhibited insulin-induced activation of PDE3B and its co-immunoprecipitation with PKB. Confocal microscopy indicated co-localization of PDE3B and PKB. Recombinant MPDE3B co-immunoprecipitated, and co-eluted during Superose 12 chromatography, to a greater extent with recombinant pPKB (phosphorylated/activated PKB) than dephospho-PKB or p-DeltaPKB [pPKB lacking its PH domain (pleckstrin homology domain)]. Truncated recombinant MPDE3B proteins and pPKB did not efficiently co-immunoprecipitate, suggesting that structural determinants for their interaction reside in, or are regulated by, the N-terminal portion of MPDE3B. Recruitment of PDE3B in macromolecular complexes may be critical for regulation of specific cAMP pools and signalling pathways by insulin, e.g. lipolysis.  相似文献   

3.
Reticulon (RTN) proteins are localized to the endoplasmic reticulum (ER), and are related to intracellular membrane trafficking, apoptosis, inhibiting axonal regeneration, and Alzheimer's disease. The RTN proteins are produced without an N-terminal signal peptide. Their C-terminal domain contains two long hydrophobic segments. We analyzed the ER localization signal of human RTN1-A. Mutant proteins lacking the first (39 residues) or second (36 residues) hydrophobic segment showed ER localization. On the other hand, the mutant lacking both hydrophobic segments was cytosolic. Enhanced green fluorescent protein (EGFP) tagged with the first or second hydrophobic segment of RTN1-A was localized to the ER. These results suggest that each hydrophobic segment determines the ER localization. In addition, EGFP tagged with the truncated form of the first hydrophobic segment exhibited the localization to the Golgi rather than the ER. This suggests that the length of the hydrophobic segment contributes to the ER retention of RTN1-A.  相似文献   

4.
The Saccharomyces cerevisiae MID1 gene product (Mid1) is a stretch-activated Ca(2+)-permeable channel component required for Ca2+ influx and the maintenance of viability of cells exposed to the mating pheromone, alpha-factor. It is composed of 548-amino-acid (aa) residues with four hydrophobic segments, H1 (aa 2-22), H2 (aa 92-111), H3 (aa 337-356) and H4 (aa 366-388). It also has 16 putative N-glycosylation sites. In this study, sequentially truncated Mid1 proteins conjugated with GFP were expressed in S. cerevisiae cells. The truncated protein containing the region from H1 to H3 (Mid1(1-360)-GFP) localized normally in the plasma and endoplasmic reticulum (ER) membranes and complemented the low viability and Ca(2+)-uptake activity of the mid1 mutant, whereas Mid1(1-133)-GFP containing the region from H1 to H2 did not. Mid1(Delta3-22)-GFP lacking the H1 region failed to localize in the plasma membrane. Membrane fractionation showed that Mid1(1-22)-GFP containing only H1 localized in the plasma membrane in the presence of alpha-factor, suggesting that H1 is a signal sequence responsible for the alpha-factor-induced Mid1 delivery to the plasma membrane. The region from H1 to H3 is required for the localization of Mid1 in the plasma and ER membranes. Finally, trafficking of Mid1-GFP to the plasma membrane was dependent on the N-glycosylation of Mid1 and the transporter protein Sec12.  相似文献   

5.
Phosphodiesterase-6 (PDE6) is the key effector enzyme of the phototransduction cascade in rods and cones. The catalytic core of rod PDE6 is a unique heterodimer of PDE6A and PDE6B catalytic subunits. The functional significance of rod PDE6 heterodimerization and conserved differences between PDE6AB and cone PDE6C and the individual properties of PDE6A and PDE6B are unknown. To address these outstanding questions, we expressed chimeric homodimeric enzymes, enhanced GFP (EGFP)-PDE6C-A and EGFP-PDE6C-B, containing the PDE6A and PDE6B catalytic domains, respectively, in transgenic Xenopus laevis. Similar to EGFP-PDE6C, EGFP-PDE6C-A and EGFP-PDE6C-B were targeted to the rod outer segments and concentrated at the disc rims. PDE6C, PDE6C-A, and PDE6C-B were isolated following selective immunoprecipitation of the EGFP fusion proteins. All three enzymes, PDE6C, PDE6C-A, and PDE6C-B, hydrolyzed cGMP with similar K(m) (20-23 μM) and k(cat) (4200-5100 s(-1)) values. Likewise, the K(i) values for PDE6C, PDE6C-A, and PDE6C-B inhibition by the cone- and rod-specific PDE6 γ-subunits (Pγ) were comparable. Recombinant cone transducin-α (Gα(t2)) and native rod Gα(t1) fully and potently activated PDE6C, PDE6C-A, and PDE6C-B. In contrast, the half-maximal activation of bovine rod PDE6 required markedly higher concentrations of Gα(t2) or Gα(t1). Our results suggest that PDE6A and PDE6B are enzymatically equivalent. Furthermore, PDE6A and PDE6B are similar to PDE6C with respect to catalytic properties and the interaction with Pγ but differ in the interaction with transducin. This study significantly limits the range of mechanisms by which conserved differences between PDE6A, PDE6B, and PDE6C may contribute to remarkable differences in rod and cone physiology.  相似文献   

6.
《The Journal of cell biology》1994,126(6):1407-1420
Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536- 19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting.  相似文献   

7.
8.
To identify the targeting domains of syntaxin 6 responsible for its localization to the trans-Golgi network (TGN), we examined the subcellular distribution of enhanced green fluorescent protein (EGFP) epitope-tagged syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncation/deletion mutants in 3T3L1 adipocytes. Expression of EGFP-syntaxin 6 resulted in a perinuclear distribution identical to endogenous syntaxin 6 as determined both by confocal fluorescence microscopy and subcellular fractionation. Furthermore, both the endogenous and the expressed EGFP-syntaxin 6 fusion protein were localized to a brefeldin A-insensitive but okadaic acid-sensitive compartment characteristic of the TGN. In contrast, EGFP-syntaxin 6 constructs lacking the H2 domain were excluded from the TGN and were instead primarily localized to the plasma membrane. Although syntaxin 4 was localized to the plasma membrane, syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncations containing the H2 domain of syntaxin 6 were predominantly directed to the TGN. Importantly, the syntaxin 6 H2 domain fused to the transmembrane domain of syntaxin 4 was also localized to the TGN, demonstrating that the H2 domain was sufficient to confer TGN localization. In addition to the H2 domain, a tyrosine-based plasma membrane internalization signal (YGRL) was identified between the H1 and H2 domains of syntaxin 6. Deletion of this sequence resulted in the accumulation of the EGFP-syntaxin 6 reporter construct at the plasma membrane. Together, these data demonstrate that syntaxin 6 utilizes two distinct domains to drive its specific subcellular localization to the TGN.  相似文献   

9.
The long cyclic AMP (cAMP)-specific phosphodiesterase isoform, PDE4A5 (PDE4A subfamily isoform variant 5), when transiently expressed in COS-7 cells, was shown in subcellular fractionation studies to be associated with both membrane and cytosol fractions, with immunofluorescence analyses identifying PDE4A5 as associated both with ruffles at the cell margin and also at a distinct perinuclear localisation. Deletion of the first nine amino acids of PDE4A5 (1) ablated its ability to interact with the SH3 domain of the tyrosyl kinase, LYN; (2) reduced, but did not ablate, membrane association; and (3) disrupted the focus of PDE4A5 localisation within ruffles at the cell margin. This deleted region contained a Class I SH3 binding motif of similar sequence to those identified by screening a phage display library with the LYN-SH3 domain. Truncation to remove the PDE4A5 isoform-specific N-terminal region caused a further reduction in membrane association and ablated localisation at the cell margin. Progressive truncation to delete the PDE4A long isoform common region and then the long isoform-specific UCR1 did not cause any further change in membrane association or intracellular distribution. However, deletion up to the super-short form splice junction generated an entirely soluble 'core' PDE4A species. We propose that multiple sites in the N-terminal noncatalytic portion of PDE4A5 have the potential to associate with intracellular structures and thus define its intracellular localisation. At least two such sites lie within the PDE4A5 isoform-specific N-terminal region and these appear to be primarily responsible for targeting PDE4A5 to, and organising it within, the cell margin; one is an SH3 binding motif able to interact with LYN kinase and the other lies within the C-terminal portion of the PDE4A5 unique region. A third membrane association region is located within the N-terminal portion of UCR2 and appears to be primarily responsible for targeting to the perinuclear region. Progressive N-terminal truncation, to delete defined regions of PDE4A5, identified activity changes occurring upon deletion of the SH3 binding site region and then upon deletion of the membrane association site region located within UCR2. This suggests that certain of these anchor sites may not only determine intracellular targeting but may also transduce regulatory effects on PDE4A5 activity.  相似文献   

10.
11.
The Simian 11 rotavirus glycoprotein VP7 is directed to the endoplasmic reticulum (ER) of the cell and retained as an integral membrane protein. The gene coding for VP7 predicts two potential initiation codons, each of which precedes a hydrophobic region of amino acids (H1 and H2) with the characteristics of a signal peptide. Using the techniques of gene mutagenesis and expression, we have determined that either hydrophobic domain alone can direct VP7 to the ER. A protein lacking both hydrophobic regions was not transported to the ER. Some polypeptides were directed across the ER membrane and then into the secretory pathway of the cell. For a variant retaining only the H1 domain, secretion was cleavage dependent, since an amino acid change which prevented cleavage also stopped secretion. However, secretion of two other deletion mutants lacking H1 and expressing truncated H2 domains was unaffected by this mutation, suggesting that these proteins were secreted without cleavage of their NH2-terminal hydrophobic regions or secreted after cleavage at a site(s) not predicted by current knowledge.  相似文献   

12.
Using the two-hybrid technique we identified a novel protein whose N-terminal 88 amino acids (aa) interact with the C-terminal regulatory domain of the plasma membrane (PM) H+-ATPase from Arabidopsis thaliana (aa 847-949 of isoform AHA1). The corresponding gene has been named Ppi1 for Proton pump interactor 1. The encoded protein is 612 aa long and rich in charged and polar residues, except for the extreme C-terminus, where it presents a hydrophobic stretch of 24 aa. Several genes in the A. thaliana genome and many ESTs from different plant species share significant similarity (50-70% at the aa level over stretches of 200-600 aa) to Ppi1. The PPI1 N-terminus, expressed in bacteria as a fusion protein with either GST or a His-tag, binds the PM H+-ATPase in overlay experiments. The same fusion proteins and the entire coding region fused to GST stimulate H+-ATPase activity. The effect of the His-tagged peptide is synergistic with that of fusicoccin (FC) and of tryptic removal of a C-terminal 10 kDa fragment. The His-tagged peptide binds also the trypsinised H+-ATPase. Altogether these results indicate that PPI1 N-terminus is able to modulate the PM H+-ATPase activity by binding to a site different from the 14-3-3 binding site and is located upstream of the trypsin cleavage site.  相似文献   

13.
A gene encoding a novel human 3', 5'-cyclic nucleotide phosphodiesterase (PDE) was identified and characterized. PDE10A1 encodes a protein that is 779 amino acids in length. An incomplete cDNA for a second 5'-splice variant, PDE10A2, was isolated. The proteins encoded by the two variants share 766 amino acids in common. This common region includes an amino-terminal domain with partial homology to the cGMP-binding domains of PDE2, PDE5 and PDE6 as well as a carboxy-terminal region with homology to the catalytic regions of mammalian PDEs. Northern analysis revealed that PDE10A is widely expressed. The PDE10A gene was mapped to three yeast artificial chromosomes (YACs) that contain human DNA from chromosome 6q26-27. A recombinant protein corresponding to the 766 amino acid region common to PDE10A1 and PDE10A2 was expressed in yeast. It hydrolyzed both cAMP and cGMP. Inhibitors that are selective for other PDE families are poor inhibitors of PDE10A; however, PDE10A is inhibited by the non-specific PDE inhibitor, IBMX.  相似文献   

14.
15.
cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.  相似文献   

16.
Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.  相似文献   

17.
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.  相似文献   

18.
19.
G9a is one of the well-characterized histone methyltransferases. G9a regulates H3K9 mono- and dimethylation at euchromatic region and consequently plays important roles in euchromatic gene regulation. Mammalian G9a contains several distinct domains, such as GHD (G9a homology domain), ANK, preSET, SET and PostSET. These domains are highly conserved between mammals and Drosophila. Although mammalian G9a has nuclear localization signal (NLS) in its N-terminal region, the amino acid sequences of this region are not conserved in Drosophila. Here we have examined the subcellular localization of a series of truncated forms of Drosophila G9a (dG9a). The identified region (aa337-aa470) responsible for nuclear localization of dG9a contains four short stretches of positively charged basic amino acids (NLS1, aa334-aa345; NLS2, aa366-aa378; NLS3, aa407-aa419; NLS4, aa461-aa472). Each of NLS1, NLS3 and NLS4 is sufficient for the nuclear localization when they are fused with the enhanced green fluorescent protein. These NLSs of dG9a are distinct from those of mammalian G9a in their positions and amino acid sequences.  相似文献   

20.
Wang Q  Wang Y  Liang C  Song J  Chen X 《Journal of virology》2008,82(8):4072-4081
The HA2 protein of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearNPV) is a WASP homology protein capable of nucleating branched actin filaments in the presence of the Arp2/3 complex in vitro. To determine the role of ha2 in the HearNPV life cycle, ha2 knockout and ha2 repair bacmids were constructed. Transfection and infection analysis demonstrated that the ha2 null bacmid was unable to produce infectious budded virus (BV), while the repair bacmid rescued the defect. In vitro analysis demonstrated that the WCA domain of HA2 accelerates Arp2/3-mediated actin assembly and is indispensable to the function of HA2. However, analysis of the repaired recombinant with a series of truncated ha2 mutants demonstrated that the WCA domain was essential but not enough to yield infectious virions, and a hydrophobic domain (H domain) consisting of amino acids (aa) 167 to 193 played a pivotal role in the production of BV. Subcellular localization analysis with enhanced green fluorescent protein fusions showed that the H domain functioned as a nuclear localization signal. In addition, deletion of the C terminus of the ha2 product, a phosphatidylinositol 4-kinase homolog, dramatically decreased the viral titer, while deletion of 128 aa from the N terminus did not affect HA2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号