首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Polypeptide synthesis directed by poly(U) or MS 2 phage RNA is several fold more active in cell-free systems prepared from polyamine supplemented bacteria than in extracts of polyamine depleted cells. This effect depends on the presence of defective 30S ribosomal subunits in the starved bacteria. It is concluded that polyamines play a role in the normal biosynthesis, maturation and/or assembly of the small ribosomal subparticles.  相似文献   

2.
Properties and distribution of intracellular putrescine in a pseudomonas   总被引:5,自引:5,他引:0  
Kim, Ki-Han (Wayne State University, Detroit, Mich.). Properties and distribution of intracellular putrescine in a Pseudomonas. J. Bacteriol. 91:193-197. 1966.-A Pseudomonas species which contains putrescine as the only intracellular polyamine was used to study the distribution of putrescine in the cells and the changes in putrescine content upon nitrogen or carbon and nitrogen starvation. In the cell-free extract, approximately 80 to 90% of the putrescine was found in the soluble fraction, and the rest was found in the ribosomal fraction; 50% of the putrescine could be removed from the cells by nitrogen starvation. Putrescine content in the ribosomes prepared from nitrogen-starved cells was about one-half of that in the unstarved cells. Putrescine was found in both 30S and 50S ribosomal particles. In the presence of 10(-3)m Mg(++), the ribosomal particles did not exchange bound putrescine for free putrescine, but did incorporate free spermine from the medium. Cells grown on glucose-NH(3) medium contained large amounts of acetyl putrescine. Cells grown on putrescine contained negligible amounts of acetyl putrescine, but readily formed acetyl putrescine when subjected to starvation.  相似文献   

3.
Different Escherichia coli mutants auxotrophic for polyamines were studied in order to investigate the relationships among polypeptide synthesis in cell-free systems, ribosomal distribution profiles and endogenous polyamine pools. The in vitro protein synthetic activity and the polyribosomal content were reduced in extracts from putrescine-starved cells of the double mutans MA 255 and MA 261, but not in the arginine-conditional auxotroph DK 6. Putrescine addition to the cultures of all these strains previously starved for polyamines, provoked a shift towards monomers in the equilibrium involving ribosomal particles. Concomitant changes in the intracellular levels of polyamines were observed: putrescine and spermidine increased markedly, and cadaverine disappeared.  相似文献   

4.
Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.  相似文献   

5.
The effects of polyamines on the equilibrium between prokaryotic ribosomal subunits and 70 S ribosomes have been studied as a function of concentration of Mg2+ from 2.5 to 7.5 mM. Run-off ribosomes were obtained from Escherichia coli and were washed with buffered 1 M NH4C1. Spermidine at 1 mm favors association of subunits at all concentrations of Mg2+. Putrescine, at concentrations above 8 mM, favors net dissociation at concentrations of Mg2+ below 4.5 mM. Streptomycin behaves like spermidine, while putrescine behaves like initiation factor 1 and initiation factor 3. The effect of putrescine on dissociation is time-dependent and appears to have a half-life of about 3.5 min at 30 degrees. When added after the effects of spermidine or streptomycin on association have occurred, putrescine still causes dissociation. The data suggests that putrescine may reduce net formation of vacant 70 S ribosomes. Another possibility is that putrescine and spermidine may act antagonistically to maintain a labile equilibrium between ribosomal subunits and vacant 70 S ribosomes. It may be significant that the putrescine effect is observed at the concentration of Mg2+ found to be optimum for initiation.  相似文献   

6.
Effect of polyamines on in vitro reconstitution of ribosomal subunits   总被引:1,自引:0,他引:1  
The effect of polyamines on in vitro reconstitution of Escherichia coli 30S and 50S ribosomal subunits has been studied. Spermidine stimulated the reconstitution of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits at least 1.6-fold. The reconstitution of 30S particles from normal 16S rRNA and total proteins of 30S subunits exhibited only slight spermidine stimulation. However, the optimal Mg2+ concentration of the reconstitution was decreased from 20 mM to 16 mM in the presence of 3 mM spermidine. In the absence of spermidine the assembly of 30S particles from normal 16S rRNA was more rapid than the assembly from 16S rRNA lacking the methyl groups on two neighboring adenines. The reconstitution of 50S particles from 23S and 5S rRNA and total proteins of 50S subunits was not influenced greatly by spermidine. Gel electrophoresis results, from reconstitution experiments of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits, showed that the assembly of S1 and S9 proteins to 23S core particles was stimulated by spermidine during reconstitution. The relationship of polyamine effects on in vitro ribosome assembly from its constituents to in vivo ribosome assembly is discussed. The reconstitution of Bacillus subtilis 30S particles from 16S rRNA and total proteins of 30S subunits was also stimulated approximately 1.3-fold by 3 mM spermidine.  相似文献   

7.
Ribosomal precursor particles of Bacillus megaterium.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pulse-labeled cells of Bacillus megaterium were converted to protoplasts, and lysates of the protoplasts were analyzed by sucrose gradient sedimentation. Precursor ribonucleoprotein (RNP) particles then appeared predominantly as 50S and 30S precursor ribosomal subunits. Polyacrylamide gel electrophoresis of the ribosomal ribonucleic acid from the 50S and 30S RNP particles confirmed their precursor nature since they were shown to contain precursor 23S and 16S ribosomal ribonucleic acid, respectively. Treatment of protoplast lysates with 0.5% deoxycholate prior to sedimentation analysis resulted in a markedly different radioactivity profile. The 50S RNP particles were no longer present, but 43S particles were observed in addition to increased amounts of pulse-labeled material sedimenting at 30S and slower. Extracts from cells broken in a French press showed a profile from sucrose gradient sedimentation similar to that of the deoxycholate-treated protoplast lysate. These data suggest that the nature of the precursor ribosomal particles appears to be a function of the method of cell disruption or detergent treatment of the cell extract preparation. The observed 50S and 30S RNP particles may be the major precursor ribosomal subunits in vivo; the slower-sedimenting species could result from some form of breakdown or change in the configuration of the 50S and 30S precursors.  相似文献   

8.
Summary DifferentEscherichia coli mutants auxotrophic for polyamines were studied in order to investigate the relationships among polypeptide synthesis in cell-free systems, ribosomal distribution profiles and endogenous polyamine pools. Thein vitro protein synthetic activity and the polyribosomal content were reduced in extracts from putrescine-starved cells of the double mutants MA 255 and MA 261, but not in the arginine-conditional auxotroph DK 6. Putrescine addition to the cultures of all these strains previously starved for polyamines, provoked a shift towards monomers in the equilibrium involving ribosomal particles. Concomitant changes in the intracellular levels of polyamines were observed: putrescine and spermidine increased markedly, and cadaverine disappeared.Dedicated to ProfessorLuis F. Leloir on the occasion of ths 70th birthday.  相似文献   

9.
Polyphenylalanine synthesis was carried out with Escherichia coli Q13 50-S ribosomal subunits and reconstituted 30-S particles containing different combinations of 23-S core particles and 30-S subunit split proteins obtained from a polyamine-requiring mutant of E. coli during its growth in the presence or absence of putrescine. It was concluded that the defect in the amount of some kinds of 30-S subunit split proteins was responsible for the decrease of polypeptide synthesis in a polyamine-requiring mutant of E. coli grown in the absence of polyamines. The methylation of 16-S RNA during growth in the absence of putrescine was decreased, while the degree of methylation of 23-S RNA did not change significantly. The decrease in methylation of 16-S RNA in the absence of putrescine was due mainly to a decrease of methylation of adenine. The relationship between the decrease of polypeptide synthetic activity of 30-S ribosomal subunits obtained from a polyamine-requiring mutant of E. coli grown in the absence of polyamines and the decrease of methylation of 16-S RNA is discussed.  相似文献   

10.
Chloroplast ribosomal proteins from spinach have been prepared in the presence of a protease inhibitor and some modifications have been introduced to the previous characterization of the 50S subunits (Mache et al., MGG, 177, 333, 1980): 33 ribosomal proteins are detected instead of 34. No change has been observed for the 30S subunits.Using a light-driven system of protein synthesis it is shown that up to ten ribosomal proteins of the 30S and eight proteins of the 50S subunits are made in the chloroplast.Newly synthesized ribosomal subunits have been analysed on CsCl gradients after sedimentation at equilibrium, allowing the separation of fully assembled subunits from incomplete ribosomal particles. Most of the newly made 50S subunits are fully assembled (=1.634). A small amount of incomplete 50S particles (=1.686) is detectable. Newly made 30S subunits (=1.598) and incomplete 30S particles (=1.691) are also observed. The ribosomal proteins of the incomplete 30S have been determined. They contain eight or nine of the 30S-proteins, seven of which are synthesized within the chloroplast. It is suggested that incomplete ribosomal particles resulted from a step in the assembly of ribosomal subunits.  相似文献   

11.
In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.  相似文献   

12.
An ethionine-containing submethylated particle related to the 50 S ribosomal subunit has been isolated from Escherichia coli grown in the presence of ethionine. This particle (E-50S) lacks L16, contains reduced amounts of L6, L27, L28 and L30 and possesses a more labile and flexible structure than the normal 50 S subunit. The E-50S particle has defective association properties and is incapable of peptide bond formation. It can be converted to an active 50 S ribosomal subunit when ethionine-treated bacteria are incubated under conditions which permit methylation of submethylated cellular components (presence of methionine) in the absence of de novo protein and RNA synthesis (presence of rifampicin).Total reconstitution of 50 S ribosomal subunits in vitro using normal 23 S and 5 S ribosomal RNA and proteins prepared from E-50S particles yields active subunits only if L16 is also added. The hypothesis that E-50S particles accumulate in ethionine-treated bacteria because the absence of methylation of one or more of their components blocks a late stage (L16 integration) in the normal 50 S assembly process is discussed.  相似文献   

13.
The late stages of 30S and 50S ribosomal subunits biogenesis have been studied in a wild-type (wt) strain of Escherichia coli (MC4100) subjected to a severe heat stress (45-46°C). The 32S and 45S ribosomal particles (precursors to 50S subunits) and 21S ribosomal particles (precursors to 30S subunits) accumulate under these conditions. They are authentic precursors, not degraded or dead-end particles. The 21S particles are shown, by way of a modified 3'5' RACE procedure, to contain 16S rRNA unprocessed, or processed at its 5' end, and not at the 3' end. This implies that maturation of 16S rRNA is ordered and starts at its 5'-terminus, and that the 3'-terminus is trimmed at a later step. This observation is not limited to heat stress conditions, but it also can be verified in bacteria growing at a normal temperature (30°C), supporting the idea that this is the general pathway. Assembly defects at very high temperature are partially compensated by plasmid-driven overexpression of the DnaK/DnaJ chaperones. The ribosome assembly pattern in wt bacteria under a severe heat stress is therefore reminiscent of that observed at lower temperatures in E. coli mutants lacking the chaperones DnaK or DnaJ.  相似文献   

14.
30S and 50S subunits, in the presence of either 20 mM Mg2+ or 6 mM Mg2+ and 5mM spermidine plus 25 mM putrescine, were observed to completely associate to form 70S monosomes as monitored by sucrose gradient sedimentation. Subunits maintained under the above ionic conditions were compared with 30S and 50S particles at low (6 mM) magnesium concentration with respect to the reactivity of individual ribosomal proteins to lactoperoxidase-catalyzed iodination. Altered reactivity to enzymatic iodination of ribosomal proteins S4, S9, S10, S14, S17, S19, and S20 in the small subunit of ribosomal proteins, L2, L9, L11, L27, and L30 in the large subunit following incubation with high magnesium or magnesium and polyamines suggests that a conformation change in both subunits accompanies the formation of 70S monosomes. The results further demonstrate that the effect of Mg2+ on subunit conformation is mimicked when polyamines are substituted for magnesium necessary for subunit association.  相似文献   

15.
The association-dissociation kinetics Of ribosomal particles from E. coli have been studied using a pressure-jump apparatus witn optical detection. Experiments on isolated subunits yield two relaxation times of about 10 and 700 ms, respectively. With mixtures of 30 S and 50 S particles an additional relaxation time of about 100 ms is observed, which is assigned to the equilibrium 30 S + 50 S ? 70 S. The two other times are attributed to reversible equilibria between subunit monomers and subunit homo-associates.  相似文献   

16.
When cells of S. typhimurium were heated at 48 C for 30 min in phosphate buffer (pH 6.0), they became sensitive to Levine Eosin Methylene Blue Agar containing 2% NaCl (EMB-NaCl). The inoculation of injured cells into fresh growth medium supported the return of their normal tolerance to EMB-NaCl within 6 hr. The fractionation of ribosomal ribonucleic acid (rRNA) from unheated and heat-injured cells by polyacrylamide gel electrophoresis demonstrated that after injury the 16S RNA species was totally degraded and the 23S RNA was partially degraded. Sucrose gradient analysis demonstrated that after injury the 30S ribosomal subunit was totally destroyed and the sedimentation coefficient of the 50S particle was decreased to 47S. During the recovery of cells from thermal injury, four species of rRNA accumulated which were demonstrated to have the following sedimentation coefficients: 16, 17, 23, and 24S. Under identical recovery conditions, 22, 26, and 28S precursors of the 30S ribosomal subunit and 31 and 48S precursors of the 50S ribosomal subunit accumulated along with both the 30 and 50S mature particles. The addition of chloramphenicol to the recovery medium inhibited both the maturation of 17S RNA and the production of mature 30S ribosomal subunits, but permitted the accumulation of a single 22S precursor particle. Chloramphenicol did not affect either the maturation of 24S RNA or the mechanism of formation of 50S ribosomal subunits during recovery. Very little old ribosomal protein was associated with the new rRNA synthesized during recovery. New ribosomal proteins were synthesized during recovery and they were found associated with the new rRNA in ribosomal particles. The rate-limiting step in the recovery of S. typhimurium from thermal injury was in the maturation of the newly synthesized rRNA.  相似文献   

17.
O W Odom  H Y Deng  E R Dabbs  B Hardesty 《Biochemistry》1984,23(21):5069-5076
Escherichia coli ribosomal protein S21 was labeled at its single cysteine group with a fluorescent probe. Labeled S21 showed full activity in supporting MS2 RNA-dependent binding of formylmethionyl-tRNAf to 30S ribosomal subunits. Fluorescence anisotropy measurements and direct analysis on glycerol gradients demonstrate conclusively that labeled S21 binds to 50S ribosomal subunits as well as to 30S and 70S particles. The relative binding affinities are in the order 70S greater than 30S greater than 50S. Other results presented appear to indicate that S21 is bound in the same position on either 50S subunits or 30S subunits as in 70S ribosomes, suggesting that the protein is bound simultaneously to both subunits in the latter. Addition of 50S subunits to 30S particles containing probes on S21 and at the 3' end of 16S RNA caused a decrease in the energy transfer between these points. The results correspond to an apparent change in distance from 51 to 61 A.  相似文献   

18.
The interaction of ribosomal subunits from Escherichia coli has been studied using crosslinking reagents. Radioactive 35S-labeled 50 S subunits and non-radioactive 30 S subunits were allowed to reassociate to form 70 S ribosomes. The 70 S particles, containing radioactivity only in the 50 S protein moiety, were incubated with glutaraldehyde or formaldehyde. As a result of this treatment a substantial fraction of the 70 S particles did not dissociate at 1 mm-Mg2+. This fraction was isolated and the ribosomal proteins were extracted. The protein mixture was analyzed by the Ouchterlony double diffusion technique by using eighteen antisera prepared against single 30 S ribosomal proteins (all except those against S3, S15 and S17). As a result of the crosslinking procedure it was found that only anti-S16 co-precipitated 35S-labeled 50 S protein. It is concluded that the 30 S protein S16 is at or near the site of interaction between subunits and can become crosslinked to one or more 50 S ribosomal proteins.  相似文献   

19.
20.
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号