首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Small-angle neutron scattering (SANS) with contrast variation was used to obtain the low-resolution structure of nascent HDL (nHDL) reconstituted with dimyristoyl phosphatidylcholine (DMPC) in the absence and presence of cholesterol, [apoA1:DMPC (1:80, mol:mol) and apoA1:DMPC:cholesterol (1:86:9, mol:mol:mol)]. The overall shape of both particles is discoidal with the low-resolution structure of apoA1 visualized as an open, contorted, and out of plane conformation with three arms in nascent HDL/dimyristoyl phosphatidylcholine without cholesterol (nHDLDMPC) and two arms in nascent HDL/dimyristoyl phosphatidylcholine with cholesterol (nHDLDMPC+Chol). The low-resolution shape of the lipid phase in both nHDLDMPC and nHDLDMPC+Chol were oblate ellipsoids, and fit well within their respective protein shapes. Modeling studies indicate that apoA1 is folded onto itself in nHDLDMPC, making a large hairpin, which was also confirmed independently by both cross-linking mass spectrometry and hydrogen-deuterium exchange (HDX) mass spectrometry analyses. In nHDLDMPC+Chol, the lipid was expanded and no hairpin was visible. Importantly, despite the overall discoidal shape of the whole particle in both nHDLDMPC and nHDLDMPC+Chol, an open conformation (i.e., not a closed belt) of apoA1 is observed. Collectively, these data show that full length apoA1 retains an open architecture that is dictated by its lipid cargo. The lipid is likely predominantly organized as a bilayer with a micelle domain between the open apoA1 arms. The apoA1 configuration observed suggests a mechanism for accommodating changing lipid cargo by quantized expansion of hairpin structures.  相似文献   

2.
Human high‐density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140–240 kDa, disk‐shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high‐resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that the commonly used cholate dialysis method for discoidal HDL preparation usually contains 5–10% lipid‐poor apoAI that significantly interferes with the high‐resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid‐poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high‐resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid‐binding activity. Interestingly, these property/functional differences are independent from the apoAI α‐helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two‐dimensional NMR and negative stain electron microscopy data. Our result further provides the first high‐resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.  相似文献   

3.
Apolipoprotein A1 (apoA1) is a component of the high density lipoproteins (HDL) that regulates the transport of cholesterol between the liver and peripheral cells and modulates the removal of any excess of cholesterol from membranes. Any variation in apoA1 composition may modify the plasma lipid profile and be involved in atherogenesis. We investigated apoA1 composition in plasma of 6 children with nephrotic syndrome, a condition characterized by high levels of cholesterol in plasma and by a high risk to develop atherosclerosis. Non-denaturing two-dimensional electrophoresis (Nat/SDS-PAGE), mass spectrometry, western blot and pull down experiments were done to characterize proteins and define putative interactions. ApoA1 was resolved in 12 variants, 6 of which had a slightly lower molecular weight (18-19 KDa) and migrated on the same axes of the β chain of haptoglobin (Hp). Low molecular weight apoA1 were observed in carriers of different Hp haplotypes (including one homozygous for the rare ββα1α1) ruling out any contaminant effect of co-migration of apoA1 with Hp α2 chain. Overall, apoA1 isoforms were much more present in plasma of nephrotic patients compared to a normal profile. These findings show that apoA1 plasma in nephrotic syndrome is heterogeneous in terms of molecular weight. Low molecular weight fragments lack internal structural domains and likely form macro-aggregates with Hp. Fragmentation and transport of apoA1 may be involved in the general disorder of lipid metabolism that characterizes nephrotic syndrome.  相似文献   

4.
HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice.  相似文献   

5.
High-density lipoproteins (HDL) function as cholesterol transporters, facilitating the removal of excess cholesterol from the body. Due to the heterogeneity of native HDL particles (both in size and shape), the details on how these protein-lipid particles form and the structure they assume in their lipid-associated states are not well characterized. We report here a study of the self-assembly of discoidal HDL particles using coarse-grained (CG) molecular dynamics. The microsecond simulations reveal the self-assembly of HDL particles from disordered protein-lipid complexes to form structures containing many of the features of the generally accepted double-belt model for discoidal HDL particles. HDL assembly is found to proceed in two broad steps, aggregation of proteins and lipids driven by the hydrophobic effect which occurs on a approximately 1 micros time scale, followed by the optimization of the protein structure driven by increasingly specific protein-protein interactions.  相似文献   

6.
Plasma high‐density lipoproteins (HDLs) protect endothelial cells against apoptosis induced by oxidized low‐density lipoprotein (oxLDL). The specific component(s) of HDLs implicated in such cytoprotection remain(s) to be identified. Human microvascular endothelial cells (HMEC‐1) were incubated with mildly oxLDL in the presence or absence of each of five physicochemically distinct HDL subpopulations fractionated from normolipidemic human plasma (n= 7) by isopycnic density gradient ultracentrifugation. All HDL subfractions protected HMEC‐1 against oxLDL‐induced primary apoptosis as revealed by nucleic acid staining, annexin V binding, quantitative DNA fragmentation, inhibition of caspase‐3 activity and reduction of cytoplasmic release of cytochrome c and apoptosis‐inducing factor. Small, dense HDL 3c displayed twofold superior intrinsic cytoprotective activity (as determined by mitochondrial dehydrogenase activity) relative to large, light HDL 2b on a per particle basis (P < 0.05). Equally, all HDL subfractions attenuated intracellular generation of reactive oxygen species (ROS); such anti‐oxidative activity diminished from HDL 3c to HDL 2b. The HDL protein moiety, in which apolipoprotein A‐I (apoA‐I) predominated, accounted for ~70% of HDL anti‐apoptotic activity. Furthermore, HDL reconstituted with apoA‐I, cholesterol and phospholipid potently protected HMEC‐1 from apoptosis. By contrast, modification of the content of sphingosine‐1‐phosphate in HDL did not significantly alter cytoprotection. We conclude that small, dense, lipid‐poor HDL 3 potently protects endothelial cells from primary apoptosis and intracellular ROS generation induced by mildly oxLDL, and that apoA‐I is pivotal to such protection.  相似文献   

7.
Apolipoprotein J (apoJ, protein; APOJ, gene) is found in serum associated with high-density lipoprotein (HDL) subfractions, which also contain apolipoprotein A-I (apoA1) and cholesteryl ester transfer protein. ApoJ has been shown to be involved in a variety of physiological functions, including lipid transport. In earlier studies we reported the existence of a common genetic polymorphism (APOJ*1 and APOJ*2 alleles) using isoelectric focusing (IEF) and immunoblotting. In this study we determined the molecular basis of this polymorphism and together with another polymorphism at codon 328 (G-->A) evaluated its relationship with serum HDL cholesterol and apoA1 levels in 767 African blacks stratified by staff level: junior (less affluent, n = 450) and senior (more affluent, n = 317). The molecular analysis of the cathodally shifted APOJ*2 allele on IEF gels revealed an amino acid substitution of asparagine by histidine resulting from a missense mutation (A-->C) at codon 317 in exon 7. The frequency of the APOJ*2 (C) allele of codon 317 in the total sample was 0.267, whereas that of the less common allele A of codon 328 was 0.04. Despite their close proximity, no linkage disequilibrium was observed between the 2 polymorphisms. The impact of the codon 317 polymorphic variation was significant on serum HDL cholesterol (p = 0.003) and HDL3 cholesterol (p = 0.001) in junior staff. The adjusted mean values of these traits were higher in the codon 317 APOJ*2/*2 genotype than in the *1/*1 and *1/*2 genotypes. Overall, the APOJ codon 317 polymorphism explained 10.2% and 8.3% of the phenotypic variation in HDL cholesterol and HDL3 cholesterol, respectively, in junior staff. The codon 328 polymorphism showed a significant effect on HDL2 cholesterol (p = 0.039) and apoA1 (p = 0.007) only in junior women and accounted for 2.5% and 4.2% of the phenotypic variation in HDL2 cholesterol and apoA1, respectively. We also analyzed the combined effects of these genotypes at the 2 polymorphic sites. Significant effects on HDL cholesterol (p = 0.004) and HDL3 cholesterol (p = 0.008) in junior men and on HDL2 cholesterol (p = 0.003) in junior women were observed in the combined genotype data. The 2-locus genotypes explained 6.0% and 5.3% of the residual phenotypic variation of HDL cholesterol and HDL3 cholesterol in junior men and 10.4% of HDL2 cholesterol in junior women. These data indicate that the effect of the APOJ polymorphism on HDL cholesterol levels is modulated by socioeconomic status, as measured by staff level. Given the association of HDL and its subfractions with cardiovascular disease, these polymorphisms may lead to a better understanding of interracial differences in the risk of cardiovascular disease.  相似文献   

8.
Interstitial fluid lipoproteins   总被引:10,自引:0,他引:10  
While a wide variety of techniques has been used to collect samples of interstitial fluid, most of our detailed knowledge about the composition of interstitial fluid lipoproteins has come from lymph collection studies. The considerable variability of lymph data probably reflects the effect of variable metabolic modification and different capillary permeabilities on the lipoprotein composition of interstitial fluid. All density classes of plasma lipoproteins are present in lymph. In peripheral lymph, the lymph/plasma concentration ratios of lipoproteins vary from 0.03 for VLDL-sized particles to 0.2 for HDL. Lymph from more permeable vascular beds, such as lung and myocardium, contains proportionately more lipoproteins. Their lymph/plasma concentration ratios vary from 0.1 to 0.6. In general, lymph lipoproteins are more heterogeneous in size than their plasma counterparts. Lymph HDL and LDL contain larger and smaller particles than their plasma equivalents. Lymph lipoproteins have unusual shapes (square packing and discoidal), chemical compositions, and molecular charge, which suggest de novo formation and/or extensive peripheral modification. Lymph HDL and LDL are enriched in free cholesterol. Lymph HDL also has increased cholesterol/protein and phospholipid/protein (especially sphingomyelin) ratios (Sloop, C.H., L. Dory, and P.S. Roheim, unpublished observations). Lymph HDL apoprotein composition differs from that of plasma, with an increase in apoE and apoA-IV content relative to apoA-I. These discoidal HDL particles may be products of an initial stage of reverse cholesterol transport. We believe further study of their metabolic fate would give important information concerning the later stages of reverse cholesterol transport.  相似文献   

9.
The primary objectives of this study were to determine whether analogs to native discoidal apolipoprotein (apo)E-containing high-density lipoproteins (HDL) could be prepared in vitro, and if so, whether their conversion by lecithin-cholesterol acyltransferase (LCAT; EC 2.3.1.43) produced particles with properties comparable to those of core-containing, spherical, apoE-containing HDL in human plasma. Complexes composed of apoE and POPC, without and with incorporated unesterified cholesterol, were prepared by the cholate-dialysis technique. Gradient gel electrophoresis showed that these preparations contain discrete species both within (14-40 nm) and outside (10.8-14 nm) the size range of discoidal apoE-containing HDL reported in LCAT deficiency. The isolated complexes were discoidal particles whose size directly correlated with their POPC:apoE molar ratio: increasing this ratio resulted in an increase in larger complexes and a reduction in smaller ones. At all POPC:apoE molar ratios, size profiles included a major peak corresponding to a discoidal complex 14.4 nm long. Preparations with POPC:apoE molar ratios greater than 150:1 contained two distinct groups of complexes, also in the size range of discoidal apoE-containing HDL from patients with LCAT deficiency. Incorporation of unesterified cholesterol into preparations (molar ratio of 0.5:1, unesterified cholesterol:POPC) resulted in component profiles exhibiting a major peak corresponding to a discoidal complex 10.9 nm long. An increase of unesterified cholesterol and POPC (at the 0.5:1 molar ratio) in the initial mixture, increased the proportion of larger complexes in the profile. Incubation of isolated POPC-apoE discoidal complexes (mean sizes, 14.4 and 23.9 nm) with purified LCAT and a source of unesterified cholesterol converted the complexes to spherical, cholesteryl ester-containing products with mean diameters of 11.1 nm and 14.0 nm, corresponding to apoE-containing HDL found in normal plasma. Conversion of smaller cholesterol-containing discoidal complexes (mean size, 10.9 nm) under identical conditions resulted in spherical products 11.3, 13.3, and 14.7 nm across. The mean sizes of these conversion products compared favorably with those (mean diameter, 12.3 nm) of apoE-containing HDL of human plasma. This conversion of cholesterol-containing complexes is accompanied by a shift of some apoE to the LDL particle size interval. Our study indicates that apoE-containing complexes formed by the cholate-dialysis method include species similar to discoidal apoE-containing HDL and that incubation with LCAT converts most of them to spherical core-containing particles in the size range of plasma apoE-containing HDL. Plasma HDL particles containing apoE may arise in part from direct conversion of discoidal apoE-containing HDL by LCAT.  相似文献   

10.
Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers.  相似文献   

11.
Conversion of discoidal phospholipid (PL)-rich high density lipoprotein (HDL) to spheroidal cholesteryl ester-rich HDL is a central step in reverse cholesterol transport. A detailed understanding of this process and the atheroprotective role of apolipoprotein A-I (apoA-I) requires knowledge of the structure and dynamics of these various particles. This study, combining computation with experimentation, illuminates structural features of apoA-I allowing it to incorporate varying amounts of PL. Molecular dynamics simulated annealing of PL-rich HDL models containing unesterified cholesterol results in double belt structures with the same general saddle-shaped conformation of both our previous molecular dynamics simulations at 310 K and the x-ray structure of lipid-free apoA-I. Conversion from a discoidal to a saddle-shaped particle involves loss of helicity and formation of loops in opposing antiparallel parts of the double belt. During surface expansion caused by the temperature-jump step, the curved palmitoyloleoylphosphatidylcholine bilayer surfaces approach planarity. Relaxation back into saddle-shaped structures after cool down and equilibration further supports the saddle-shaped particle model. Our kinetic analyses of reconstituted particles demonstrate that PL-rich particles exist in discrete sizes corresponding to local energetic minima. Agreement of experimental and computational determinations of particle size/shape and apoA-I helicity provide additional support for the saddle-shaped particle model. Truncation experiments combined with simulations suggest that the N-terminal proline-rich domain of apoA-I influences the stability of PL-rich HDL particles. We propose that apoA-I incorporates increasing PL in the form of minimal surface bilayers through the incremental unwinding of an initially twisted saddle-shaped apoA-I double belt structure.  相似文献   

12.
Elevated levels of plasma high density lipoprotein (HDL) are strongly predictive of protection against atherosclerotic vascular disease. HDL particles likely have several beneficial actions in vivo, including the initiation of reverse cholesterol transport. The apparent importance of oxidative modification of low density lipoprotein in atherogenesis raises the question of how oxidative modification of HDL might affect its cardioprotective actions. HDL is readily oxidized using numerous models of lipoprotein oxidation. In vitro evidence suggests oxidation might impair some protective actions, but actually enhance other mechanisms induced by HDL that prevent the accumulation of cholesterol in the artery wall. This article reviews the current literature concerning the relative oxidizability of HDL, the structural changes induced in HDL by oxidation in vitro, and the potential consequences of oxidative modification on the protective actions of HDL in vivo.  相似文献   

13.
Apolipoprotein A-I (apoA-I) spontaneously associates with dimyristoylphosphatidylcholine (DMPC) liposomes to form discoidal high-density lipoprotein (HDL) recombinants. The uptake of cholesterol by this model HDL was studied by incubation with Celite-dispersed cholesterol. Separation of the resulting complexes by gradient centrifugation and gel filtration showed a heterogeneous distribution of particle size and composition as a consequence of the disruption and rearrangement of the recombinants. Quantitation of the amount of cholesterol taken up gave values between about 28 and 40 mol% cholesterol for the fractions within the protein peaks; the fractions with the lowest DMPC/apoA-I ratios had the lowest cholesterol contents. In another set of experiments, the association of apoA-I with DMPC-cholesterol liposomes was shown to result in complexes with characteristics similar to those obtained by the cholesterol-uptake experiments. Low concentrations of cholesterol in the liposomes enhanced the rate of lipid-protein association, but larger amounts decreased the yield of complexes by making the process thermodynamically and kinetically unfavorable. The enthalpy of recombinant formation increased with decreasing lipid/protein ratio and increasing cholesterol content, and became endothermic at about 23 mol% cholesterol. The effect of cholesterol on the thermal properties of HDL recombinants suggests that cholesterol is partially excluded from the boundary region adjacent to apoA-I. It is concluded that discoidal HDL recombinants, as a model for 'nascent' HDL, can acquire substantial amounts of cholesterol, which may be of great physiological importance for the reverse cholesterol transport and prevention of atherosclerosis.  相似文献   

14.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

15.
Guha M  Gao X  Jayaraman S  Gursky O 《Biochemistry》2008,47(44):11393-11397
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.  相似文献   

16.
Apolipoprotein (apo) A-I-containing nascent HDL particles produced by the ATP binding cassette transporter A1 have different sizes and compositions. To understand the molecular basis for this heterogeneity, the HDL particles produced by apoA-I-mediated solubilization of phospholipid (PL)/free (unesterified) cholesterol (FC) bilayer membranes in cell and cell-free systems are compared. Incubation of apoA-I with ATP binding cassette transporter A1-expressing baby hamster kidney cells leads to formation of two populations of FC-containing discoidal nascent HDL particles. The larger 11-nm diameter particles are highly FC-enriched (FC/PL = 1.2/1 mol/mol) relative to the smaller 8 nm particles and the cell plasma membrane (FC/PL = 0.4/1). ApoA-I-mediated spontaneous solubilization of either multilamellar or unilamellar vesicles made of a membrane-PL mixture and FC yields discoidal HDL particles with diameters in the range 9–17 nm and, as found with the cell system, the larger particles are relatively enriched in FC despite the fact that all particles are created by solubilization of a common FC/PL membrane domain. The size-dependent distribution of FC among HDL particles is due to varying amounts of PL being sequestered in a boundary layer by interaction with apoA-I at the disc edge. The presence of a relatively large boundary layer in smaller discoidal HDL promotes preferential distribution of phosphatidylserine to such particles. However, phosphatidylcholine and sphingomyelin which are the primary PL constituents of nascent HDL do not exhibit selective incorporation into HDL discs of different sizes. This understanding of the mechanisms responsible for the heterogeneity in lipid composition of nascent HDL particles may provide a basis for selecting subspecies with preferred cardio-protective properties.  相似文献   

17.
Klon AE  Segrest JP  Harvey SC 《Biochemistry》2002,41(36):10895-10905
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin.  相似文献   

18.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2008,47(12):3875-3882
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.  相似文献   

19.
Objective: Low plasma concentrations of high‐density lipoprotein (HDL)‐cholesterol and apolipoprotein A‐I (apoA‐I) are independent predictors of coronary artery disease and are often associated with obesity and the metabolic syndrome. However, the underlying kinetic determinants of HDL metabolism are not well understood. Research Methods and Procedures: We pooled data from 13 stable isotope studies to investigate the kinetic determinants of apoA‐I concentrations in lean and overweight—obese individuals. We also examined the associations of HDL kinetics with age, sex, BMI, fasting plasma glucose, fasting insulin, Homeostasis Model Assessment score, and concentrations of apoA‐I, triglycerides, HDL‐cholesterol and low‐density lipoprotein‐cholesterol. Results: Compared with lean individuals, overweight—obese individuals had significantly higher HDL apoA‐I fractional catabolic rate (0.21 ± 0.01 vs. 0.33 ± 0.01 pools/d; p < 0.001) and production rate (PR; 11.3 ± 4.4 vs. 15.8 ± 2.77 mg/kg per day; p = 0.001). In the lean group, HDL apoA‐I PR was significantly associated with apoA‐I concentration (r = 0.455, p = 0.004), whereas in the overweight—obese group, both HDL apoA‐I fractional catabolic rate (r = ?0.396, p = 0.050) and HDL apoA‐I PR (r = 0.399, p = 0.048) were significantly associated with apoA‐I concentration. After adjustment for fasting insulin or Homeostasis Model Assessment score, HDL apoA‐I PR was an independent predictor of apoA‐I concentration. Discussion: In overweight—obese subjects, hypercatabolism of apoA‐I is paralleled by an increased production of apoA‐I, with HDL apoA‐I PR being the stronger determinant of apoA‐I concentration. This could have therapeutic implications for the management of dyslipidemia in individuals with low plasma HDL‐cholesterol.  相似文献   

20.
Reconstituted discoidal high‐density lipoproteins (rHDL) resemble nascent HDL, which are formed at the early reverse cholesterol transport steps, and constitute the initial cholesterol (Chol) acceptors from cell membranes. We have used different sized rHDL containing or not Chol, to test their abilities to promote cholesterol and phospholipid efflux from two different cell lines: Raw 264.7 macrophages and CHOK1 cells. All rHDL and lipid‐free apolipoprotein A‐I (apoA‐I) were found to be bound to CHO and RAW cells. In RAW cells, a positive correlation between cellular binding and Chol removal was found for 78 and 96 Å rHDL. Chol‐free rHDL were more effective than Chol‐containing ones in binding to RAW cells and promoting Chol removal. These results were more evident in the 96 Å rHDL. On the other hand, rHDL binding to CHO cells was relatively independent of disc size and Chol content. In spite of the fact that apoA‐I and rHDL promoted Chol efflux from both cellular lines, only in CHOK1 cells this result was also associated to decrease Chol esterification. Among choline‐containing phospholipids, only phosphatidylcholine (PC) (but not sphingomyelin) was detected to be effuxed from both cellular lines. With the only exception of Chol‐free 96 Å discs, the other rHDL as well as apoA‐I promoted PC efflux from RAW cells. Chol‐containing rHDL were more active than Chol‐free ones of comparable size to promote PC efflux from RAW macrophages. Regarding CHO cells, only apoA‐I and Chol‐free 78 Å rHDL were active enough to remove PC. J. Cell. Biochem. 113: 1208–1216, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号