首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula cv. Jemalong plants using a bifunctional construct in which the coding sequences for the green fluorescent protein (GFP) and the β-glucuronidase protein (GUS) are fused. An Agrobacterium-mediated transformation protocol was used followed by regeneration via somatic embryogenesis in the dark, to avoid the synthesis and the consequent autofluorescence of chlorophyll. This method is a clear advantage over antibiotic and herbicide selection in which survival of non-transformed tissue is commonly reported, with the reassurance that all the somatic embryos selected as GFP positive are transformed. This was subsequently corroborated by the detection of GUS activity in leaves, stems and roots of the regenerated plants. Without antibiotic selection, and performing the embryo induction in the dark, it was possible to attest the advantage of using GFP as an in vivo detectable reporter for early embryo selection. The fusion with the GUS coding sequence provided additional evidence for the transformation of the previously selected embryos.  相似文献   

2.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

3.
An optimized protocol for Agrobacterium tumefaciens-mediated transformation of mature Quercus suber L. embryogenic masses is reported. In this work several variables were tested. Plant genotype, explant type and time elapsed between the last subculture and inoculation, i.e. the explant preculture period, were found to be very important. Interaction between inoculum density and cocultivation period influenced the transformation efficiency as well. A transformation efficiency (i.e. percentage of the inoculated explants that yielded independent transgenic embryogenic lines) of up to 43% was obtained, greatly improving the previously described method for plant transformation of adult-selected cork oak. It was also shown that this protocol could be applied to various genotypes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Genetic engineering of a wide variety of plant species has led to the improvement of plant traits. In this study, the genetic transformation of two potentially important flowering ornamentals, Melastoma malabathricum and Tibouchina semidecandra, with sense and antisense dihydroflavonol-4-reductase (DFR) genes using the Agrobacterium-mediated method was carried out. Plasmids pBETD10 and pBETD11, each harbouring the DFR gene at different orientations (sense and antisense) and selectable marker nptII for kanamycin resistance, were used to transform M. malabathricum and T. semidecandra under the optimized transformation protocol. Putative transformants were selected in the presence of kanamycin with their respective optimized concentration. The results indicated that approximately 4.0% of shoots and 6.7% of nodes for M. malabathricum regenerated after transforming with pBETD10, whereas only 3.7% (shoots) and 5.3% (nodes) regenerated with pBETD11 transformation. For the selection of T. semidecandra, 5.3% of shoots and 9.3% of nodes regenerated with pBETD10 transformation, while only 4.7% (shoots) and 8.3% (nodes) regenerated after being transformed with pBETD11. The presence and integration of the sense and antisense DFR genes into the genome of M. malabathricum and T. semidecandra were verified by polymerase chain reaction (PCR) and nucleotide sequence alignment and confirmed by southern analysis. The regenerated putative transformants were acclimatized to glasshouse conditions. Approximately 31.0% pBETD10-transformed and 23.1% pBETD11-transformed M. malabathricum survived in the glasshouse, whereas 69.4% pBETD10-transformed and 57.4% pBETD11-transformed T. semidecandra survived. The colour changes caused by transformation were observed at the budding stage of putative T. semidecandra transformants where greenish buds were produced by both T. semidecandra harbouring the sense and antisense DFR transgenes. Besides that, the production of four-petal flowers also indicated another morphological difference of putative T. semidecandra transformants from the wild type plants which produce five-petal flowers.  相似文献   

5.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

6.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

7.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

8.
Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 M BA. Following elongation on MS medium supplemented with 1 M BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.Communicated by E.D. Earle  相似文献   

9.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

10.
Somatic embryogenesis was induced from seed explants of Arachis archeri, A. porphyrocalix (Section Erectoides) and A. appressipila (Section Procumbentes) in response to 6-benzylaminopurine (BAP). Embryo axes first developed into single shoots in response to 4.4 μM BAP. Friable embryogenic calluses were produced from the hypocotyl region of these explants in response to different BAP concentrations. Embryonic leaflets also gave rise to friable calluses, but somatic embryos were only observed in explants of A. archeri and A. appressipila. Histological analyses revealed the presence of heart-shaped, torpedo and cotyledonary stages embryos, both as isolated and fused structures. A low frequency of embryo-to-plant conversion was achieved by inducing shoot development on medium solidified with 0.5% phytagel and supplemented with 1.5% or 3% sucrose. Rooting was induced on MS supplemented with indole-3-acetic acid (IAA).  相似文献   

11.
Rice (Oryza sativa ssp. indica) is an important economic crop in many countries. Although a variety of conventional methods have been developed to improve this plant, manipulation by genetic engineering is still complicated. We have established a system of multiple shoot regeneration from rice shoot apical meristem. By use of MS medium containing 4 mg L−1 thidiazuron (TDZ) multiple shoots were successfully developed directly from the meristem without an intervening callus stage. All rice cultivars tested responded well on the medium and regenerated to plantlets that were readily transferred to soil within 5–8 weeks. The tissue culture system was suitable for Agrobacterium-mediated transformation and different factors affecting transformation efficiency were investigated. Agrobacterium strain EHA105 containing the plasmid pCAMBIA1301 was used. The lowest concentration of hygromycin B in combined with either 250 mg L−1 carbenicillin or 250 mg L−1 cefotaxime to kill the rice shoot apical meristem was 50 mg L−1 and carbenicillin was more effective than cefotaxime. Two-hundred micromolar acetosyringone had no effect on the efficiency of transient expression. Sonication of rice shoot apical meristem for 10 s during bacterial immersion increased transient GUS expression in three-day co-cultivated seedlings. The gus gene was found to be integrated into the genome of the T0 transformant plantlets.  相似文献   

12.
A novel stilbene synthase gene (STS), cloned from Chinese wild Vitis pseudoreticulata (W. T. Wang) and responsible for synthesis of the phytoalexin resveratrol in grapevine, was successfully transferred into V. vinifera L. cv. Thompson Seedless via Agrobacterium tumefaciens-mediated transformation. Using transformation procedures developed in the present study, 72% GFP-positive germinated embryos were produced with about 38% of transformed embryos regenerated into normal plantlets. Integration of the STS gene into the transgenic plants was verified by PCR and Southern blot analysis. Expression of the STS gene was detected by high performance liquid chromatography (HPLC), which showed that the resveratrol concentration in the transgenic plants was 5.5 times higher than that in non-transformed control plants. Chaohong Fan and Ni Pu contributed equally to this work.  相似文献   

13.
The effects of growth regulators, wounding and antibiotics on regeneration of Hagenia abyssinica were investigated and the rolB gene was introduced into this species by Agrobacterium-mediated transformation. Regeneration was affected by type of growth regulators, wounding and antibiotics. Up to 100% regeneration could be obtained. Three transformed clones (T1, T2.1, T2.2), confirmed by PCR and Southern blot, were obtained only by excluding kanamycin from the selection medium 6 weeks after culture, followed by selection during shoot multiplication. RT-PCR revealed strong expression of rolB gene in shoots and roots of all the transgenic clones, but from leaf samples, it was detected only in T1. Rooting frequency was 77% (T1), 50% (T2.1), 57% (T2.2) and 0% for control shoots on growth regulator-free rooting medium.  相似文献   

14.
Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.  相似文献   

15.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

16.
Plants of a diploid wild cotton species (G. klotzschianum A.) were efficiently regenerated from protoplasts isolated from immature somatic embryos and suspension cultures by studying various factors affecting regeneration. Purified protoplasts were cultured with the density of 2–10×105 ml−1, and the medium was k3 inorganic salts with modified KM8P organic compositions, supplemented with several combinations of PGRs. Calluses were formed from protoplasts of suspension cultures and immature somatic embryos. The influences of carbon sources and GA3 on callus differentiation and somatic embryo germination were analyzed. Somatic embryos germinated normally and formed regenerated plantlets. Regenerated plantlets were transferred to the soil and seeds were obtained. Random amplified polymorphic DNA (RAPD) analysis using 80 arbitrary oligonucleotide 10-mers showed 23 primers that gave 74 clear reproducible bands, with amplification products being monomorphic for 14 tested plantlets. A total of 1036 bands obtained exhibited no aberration in RAPD banding patterns in the 14 plants. Plants regenerated via somatic embryogenesis from the diploid cotton protoplasts have genetic homogeneity.  相似文献   

17.
AsAgrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast,Saccharomyces cerevisiae, a variety of fungi were subjected to theA. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. TheA. tumefaciens-mediated transformation of chestnut blight fungus,Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of theAspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1×106 conidia ofC. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.  相似文献   

18.
The attempts of this investigation were to develop a system for plant regeneration from explants of adult plants and its use for genetic transformation of important commercial Pelargonium zonale hybrid and P. peltatum hybrid cultivars. To this aim, leaf blade and petiole explants of eight cultivars were cultured on modified MS (Murashige and Skoog, 1962) medium with two concentrations of TDZ, BA, and zeatin (5 and 20 M). Petiole explants showed a higher regeneration response than leaf blade explants and TDZ was the most effective cytokinin. Petioles of 16 cultivars were incubated on medium containing 5, 10, 15, and 20 M TDZ, respectively, in order to identify the most effective TDZ concentration. For the majority of genotypes 10 M TDZ resulted in the best regeneration response. Cefotaxim at 500 mg l –1 had no effect on shoot regeneration and did not show interaction with glufosinate. For selection of transgenic cells, a concentration of 2.5 M glufosinate was shown to be appropriate. LBA4404 and EHA101 Agrobacterium strains carrying pIBGUS vector with pat gene as selectable marker gene and GUS gene as reporter gene were compared in transformation studies. With regard to GUS expression in petiole explants 16 days after coculture, better results were obtained with EHA 101 than with LBA 4404.  相似文献   

19.
20.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号