首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies performed on apical membranes of seawater fish gills in primary culture have demonstrated the existence of stretch-activated K(+) channels with a conductance of 122 pS. The present report examines the involvement of K(+) channels in ion transport mechanisms and cell swelling. In the whole cell patch-clamp configuration, K(+) currents were produced by exposing cells to a hypotonic solution or to 1 microM ionomycin. These K(+) currents were inhibited by the addition of quinidine and charybdotoxin to the bath solution. Isotopic efflux measurements were performed on cells grown on permeable supports using (86)Rb(+) as a tracer to indicate potassium movements. Apical and basolateral membrane (86)Rb effluxes were stimulated by the exposure of cells to a hypotonic medium. During the hypotonic shock, the stimulation of (86)Rb efflux on the apical side of the monolayer was inhibited by 500 microM quinidine or 100 microM gadolinium but was insensitive to scorpion venom [Leirus quinquestriatus hebraeus (LQH)]. An increased (86)Rb efflux across the basolateral membrane was also reduced by the addition of quinidine and LQH venom but was not modified by gadolinium. Moreover, basolateral and apical membrane (86)Rb effluxes were not modified by bumetanide or thapsigargin. There is convincing evidence for two different populations of K(+) channels activated by hypotonic shock. These populations can be separated according to their cellular localization (apical or basolateral membrane) and as a function of their kinetic behavior and pharmacology.  相似文献   

2.
When over-expressed in the cytoplasm of Escherichia coli, carboxylesterase Est55 of Geobacillus stearothermophilus was found to be released from cells upon osmotic shock. Comparing two osmotic shock protocols showed that release of Est55 was abolished in the absence of mechanosensitive channel MscL by one method but not the other. The discrepancy extended to several previously reported cytoplasmic proteins released by osmotic shock, including: EF-Tu, thioredoxin, and DnaK in E. coli. Stepwise analyses of parameters between these two protocols revealed that the use of mechanical pipetting instead of gentle dilution of cells prior to exposure to hypotonic solution abolished the effect of MscL. Furthermore, while this phenomenon of release of certain cytoplasmic proteins was sustained in all three wild type strains of E. coli, presence of gadolinium was able to serve as an MscL channel blocker and prevented release of Est55 and EF-Tu in the process. An optimized protocol of osmotic shock was developed from this study to provide a more reliable assessment of location of proteins in E. coli. This method allowed release of authentic periplasmic MalE and beta-lactamase proteins comparable to that by EDTA-lysozyme treatment.  相似文献   

3.
To examine a possible relation between the swelling-induced ATP release pathway and the volume-sensitive Cl(-) channel, we measured the extracellular concentration of ATP released upon osmotic swelling and whole-cell volume-sensitive Cl(-) currents in a human epithelial cell line, Intestine 407, which lacks expression of cystic fibrosis transmembrane conductance regulator (CFTR). Significant release of ATP was observed within several minutes after a hypotonic challenge (56-80% osmolality) by the luciferin/luciferase assay. A carboxylate analogue Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, suppressed ATP release in a concentration-dependent manner with a half-maximal inhibition concentration of 6.3 microM. However, swelling-induced ATP release was not affected by a stilbene-derivative Cl(-) channel blocker, 4-acetamido-4'-isothiocyanostilbene at 100 microM. Glibenclamide (500 microM) and arachidonic acid (100 microM), which are known to block volume-sensitive outwardly rectifying (VSOR) Cl(-) channels, were also ineffective in inhibiting the swelling-induced ATP release. Gd(3+), a putative blocker of stretch-activated channels, inhibited swelling-induced ATP release in a concentration-dependent manner, whereas the trivalent lanthanide failed to inhibit VSOR Cl(-) currents. Upon osmotic swelling, the local ATP concentration in the immediate vicinity of the cell surface was found to reach approximately 13 microM by a biosensor technique using P2X(2) receptors expressed in PC12 cells. We have raised antibodies that inhibit swelling-induced ATP release from Intestine 407 cells. Earlier treatment with the antibodies almost completely suppressed swelling-induced ATP release, whereas the activity of VSOR Cl(-) channel was not affected by pretreatment with the antibodies. Taking the above results together, the following conclusions were reached: first, in a CFTR-lacking human epithelial cell line, osmotic swelling induces ATP release and increases the cell surface ATP concentration over 10 microM, which is high enough to stimulate purinergic receptors; second, the pathway of ATP release is distinct from the pore of the volume-sensitive outwardly rectifying Cl(-) channel; and third, the ATP release is not a prerequisite to activation of the Cl(-) channel.  相似文献   

4.
Chondrocytes inhabit an unusual environment, in which they are repeatedly subjected to osmotic challenges as fluid is expressed from the extracellular matrix during static joint loading. In the present study, the effects of hypotonic shock on intracellular pH, pH(i), have been studied in isolated bovine articular chondrocytes using the pH-sensitive fluroprobe BCECF. Cells subjected to a 50% dilution rapidly alkalinised, by approximately 0.2 pH units, a sustained plateau being achieved within 300 s. The effect was not altered by inhibitors of pH regulators, such as amiloride, bafilomycin and SITS, but was absent when cells were subjected to hypotonic shocks in solutions in which Na(+) ions were replaced by NMDG(+). The response was found to be sensitive to Gd(3+) ions, blockers of stretch-activated cation channels. Alkalinisation was also inhibited by treatment with Zn(2+) ions, at a concentration reported to block voltage-activated H(+) channels (VAHC). Depolarisation using high K(+) solutions supplemented with valinomycin also induced intracellular alkalinisation. Measurements using a membrane potential (E(m)) fluorescent dye showed that E(m) was approximately -44 mV, but was depolarised by over 50 mV following HTS. The depolarisation was also inhibited by Na(+) substitution with NMDG(+) or treatment with Gd(3+). We conclude that in response to HTS the opening of a stretch-activated cation channel leads to Na(+) influx, which results in a membrane depolarisation. Subsequent activation of VAHC permits H(+) ion efflux along the prevailing electrochemcial gradient, leading to the alkalinisation, which we record.  相似文献   

5.
We investigated the mechanism underlying the perception of extracellular changes in osmotic pressure in Vallisneria gigantea Graebner and transgenic Arabidopsis thaliana (L.) Heynh. expressing cytoplasmic aequorin. Hypertonic and hypotonic treatments of A. thaliana leaves each rapidly induced a Ca2+ transient. Both responses were essentially dependent on the presence of extracellular Ca2+ and were sensitive to Gd3+ a potential blocker of stretch-activated Ca2+ channels. Immediately after plasmolysis caused by hypertonic treatment and subsequent deplasmolysis caused by hypotonic treatment, the cells did not respond to a second hypertonic treatment and exhibited an impaired adhesion of the plasma membrane (PM) to the cell wall (CW). Recovery of the responsiveness required about 6 h. By contrast, no refractory phenomenon was observed in response to hypotonic treatment. Pretreatment with cellulase completely inhibited the Ca2+ transient induced by hypertonic treatment, but it did not affect the response to hypotonic treatment. V. gigantea mesophyll cells pretreated with cellulase exhibited an impaired adhesion of the PM to the CW. The leaf cells of multicellular plants can respond to both hypertonic and hypotonic treatments through the stretch-activated Ca2+ channels, whereas cellulase-sensitive adhesion of the PM to the CW is involved only in the response to hypertonic treatment.  相似文献   

6.
The activity of volume-sensitive Cl- channels was studied in human tracheal epithelial cells (9HTEo-) by taurine efflux experiments. The efflux elicited by a hypotonic shock was partially inhibited by adenosine receptor antagonists, by alpha,beta-methyleneadenosine 5'-diphosphate (alphabetaMeADP), an inhibitor of the 5'-ectonucleotidase, and by adenosine deaminase. On the other hand, dipyridamole, a nucleoside transporter inhibitor, increased the swelling-induced taurine efflux. Extracellular ATP and adenosine increased taurine efflux by potentiating the effect of hypotonic shock. alphabetaMeADP strongly inhibited the effect of extracellular ATP but not that of adenosine. These results suggest that anion channel activation involves the release of intracellular ATP, which is then degraded to adenosine by specific ectoenzymes. Adenosine then binds to purinergic receptors, causing the activation of the channels. To directly demonstrate ATP efflux, cells were loaded with [3H]AMP, and the release of radiolabeled molecules was analyzed by high performance liquid chromatography. During hypotonic shock, cell supernatants showed the presence of ATP, ADP, and adenosine. alphabetaMeADP inhibited adenosine formation and caused the appearance of AMP. Under hypotonic conditions, elevation of intracellular Ca2+ by ionomycin caused an increase of ATP and adenosine in the extracellular solution. Our results demonstrate that volume-sensitive anion channels are regulated with an autocrine mechanism involving swelling-induced ATP release and then hydrolysis to adenosine.  相似文献   

7.
Our previous report has suggested that hyperpolarization generated by reciprocal activation of calcium-activated potassium (K(Ca)) channels and stretch-activated channels induces calcium influx that triggers myoblast fusion. Here we show that linoleic acid is involved in the process of generating hyperpolarization in cultured chick myoblasts and hence in promotion of the cell fusion. Linoleic acid dramatically hyperpolarized the membrane potential from -14 +/- 3 to -58 +/- 5 mV within 10 min. This effect was partially blocked by 1 mM tetraethylammonium (TEA) or 30 nM charybdotoxin, a selective K(Ca) channel inhibitor, and completely abolished by 10 mM TEA. Single-channel recordings revealed that linoleic acid activates TEA-resistant potassium channels as well as K(Ca) channels. Furthermore, linoleic acid induced calcium influx from extracellular solution, and this effect was partially blocked by 1 mM TEA and completely prevented at 10 mM, similar to the effect of TEA on linoleic acid-mediated hyperpolarization. Since the valinomycin-mediated hyperpolarization promoted calcium influx, hyperpolarization itself appears capable of inducing calcium influx. In addition, gadolinium prevented the valinomycin-mediated increase in intracellular calcium level under hypotonic conditions, revealing the involvement of stretch-activated channels in calcium influx. Furthermore, linoleic acid stimulated myoblast fusion, and this stimulatory effect could completely be prevented by 10 mM TEA. These results suggest that linoleic acid induces hyperpolarization of membrane potential by activation of potassium channels, which induces calcium influx through stretch-activated channels, and thereby triggers myoblast fusion.  相似文献   

8.
Fragile mutants of Saccharomyces cerevisiae require osmotic stabilizers and lyse in hypotonic solutions. A single recessive mutation, srb1, is responsible for their phenotype, but the cause of cell lysis remains uncertain. We have analyzed three possible mechanisms for this behavior: comparative amounts of wall per cell; their chitin content; and the relative activity of wall hydrolytic enzymes activated by osmotic shock. We found normal amounts of wall and higher amounts of chitin in the fragile mutants. Determination of lytic enzymes by radiolabel of the reducing ends of wall polysaccharides gave results suggesting that fragile mutants produce increased amounts of stretch-activated wall hydrolytic enzymes, which may be responsible for their lysis in hypotonic media. These enzymes normally may play a role in cell wall growth and shaping. Received: 2 March 1998 / Accepted: 17 June 1998  相似文献   

9.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are widely expressed enzymes implicated in the modulation of nucleotide cell signaling. They dephosphorylate either ATP or ADP in the presence of divalent cations, and efforts have been made to identify efficient inhibitors. E-NTPDase activity has been described in Torpedo electric organ electrocytes. We show here that gadolinium, an established blocker of stretch-activated channels, efficiently inhibits E-NTPDase activity of Torpedo electric organ (Ki = 3 microM for ATPase) as well as apyrase from potato tuber, frequently used in inhibition experiments. To our knowledge, gadolinium is the most potent inhibitor described to date for both membrane-bound and soluble E-NTPDases.  相似文献   

10.
JGP study shows that a mechanosensitive complex containing Piezo1 and Pannexin1 couples osmotic pressure to ATP secretion in bile duct cholangiocytes.

Cholangiocytes are epithelial cells that line the bile ducts within the liver and modify the composition of hepatocyte-derived bile. In this issue of JGP, Desplat et al. identify a mechanosensory complex that may help cholangiocytes respond to changes in osmotic pressure (1).Angélique Desplat (left), Patrick Delmas (center), and colleagues identify a mechanosensitive pathway that couples hypotonic stress to calcium influx and ATP release in cholangiocytes. Cell swelling induces calcium influx through the stretch-activated ion channel Piezo, triggering ATP release by Pannexin1 channels. This leads to the activation of P2X4 receptors and further calcium influx. Piezo1 (red) and Pannexin1 (green) colocalize in cells and may interact to form a mechanosensory complex that facilitates the hypotonic stress response.The activity of cholangiocytes can be regulated not only by chemical signals, such as hormones and bile acids, but also by mechanical cues arising from changes in bile composition and flow. “Abnormal mechanical tension is also an aggravating factor in many biliary diseases, including primary sclerosing cholangitis,” explains Patrick Delmas, a Research Director at Centre National de la Recherche Scientifique/Aix-Marseille-Université. “So, identifying the molecular players in cholangiocyte force sensing could provide a step forward for better management of biliary diseases.”Current models suggest that mechanical cues trigger an influx of calcium into cholangiocytes, leading to the release of ATP, which, by stimulating purinergic receptors at the cell surface, promotes further calcium influx and induces the secretion of anions, water, and HCO3 to modify the tonicity and pH of hepatic bile (2, 3). To identify mechanosensitive proteins that might regulate this pathway, Delmas and colleagues, including first author Angélique Desplat, purified mouse cholangiocytes from intrahepatic bile ducts and subjected them to hypotonic stress (1). The subsequent cell swelling activates calcium influx and ATP release.Desplat et al. found that depleting or inhibiting the stretch-activated ion channel Piezo1 significantly reduced this response to hypotonic stress. This mechanosensitive channel mediates the initial calcium influx into cholangiocytes when activated by cell swelling.The subsequent release of ATP is mediated by a different channel, however. Desplat et al. found that cholangiocytes express high levels of the gap junction family protein Pannexin1, and that pharmacologically inhibiting Pannexin1 channels reduced the amount of ATP released in response to hypotonic stress and Piezo1 activation.Delmas and colleagues suspect that the increase in intracellular calcium mediated by Piezo1 may activate Pannexin1 channels to release ATP, and this activation may be facilitated by a physical association between the two proteins: the researchers found that recombinant versions of the two channel proteins colocalize within the plasma membrane of cholangiocytes and can be coimmunoprecipitated.Finally, the researchers determined that the ATP released through Pannexin1 channels amplifies the signal initiated by hypotonic stress by activating purinergic P2X4 receptors, leading to further increases in intracellular calcium levels. Transfecting Piezo1-deficient HEK293 cells, which usually don’t respond to hypotonic stress, with cDNAs encoding Piezo1, Pannexin1, and P2X4R was sufficient to reconstitute the entire pathway of calcium influx and ATP release.Cholangiocytes express other mechanosensitive channels, including TRPV4, which has previously been implicated in the cells’ response to hypotonic stress (4). The functions of TRPV4 and Piezo1 may therefore be partially redundant, providing some robustness to cholangiocytes mechanical signaling pathways. However, it is also possible that, in vivo, the two channels respond to different stimuli and elicit distinct downstream effects. “Further investigation is warranted to better understand the respective roles of these two molecular players,” says Delmas. “To continue our work, we would like to challenge our model in vivo by testing whether Piezo1 agonists are able to regulate bile acid secretion.”  相似文献   

11.
Extracellular ATP stimulates volume decrease in Necturus red blood cells   总被引:2,自引:0,他引:2  
This study examined whether extracellular ATP stimulatesregulatory volume decrease (RVD) in Necturusmaculosus (mudpuppy) red blood cells (RBCs). Thehemolytic index (a measure of osmotic fragility) decreased withextracellular ATP (50 µM). In contrast, the ATP scavenger hexokinase(2.5 U/ml, 1 mM glucose) increased osmotic fragility. In addition, theATP-dependent K+ channelantagonist glibenclamide (100 µM) increased the hemolytic index, andthis inhibition was reversed with ATP (50 µM). We also measured cellvolume recovery in response to hypotonic shock electronically with aCoulter counter. Extracellular ATP (50 µM) enhanced cell volumedecrease in a hypotonic (0.5×) Ringer solution. In contrast, hexokinase (2.5 U/ml) and apyrase (an ATP diphosphohydrolase, 2.5 U/ml)inhibited cell volume recovery. The inhibitory effect of hexokinase wasreversed with the Ca2+ ionophoreA-23187 (1 µM); it also was reversed with the cationophore gramicidin(5 µM in a choline-Ringer solution), indicating that ATP was linkedto K+ efflux. In addition,glibenclamide (100 µM) and gadolinium (10 µM) inhibited cell volumedecrease, and the effect of these agents was reversed with ATP (50 µM) and A-23187 (1 µM). Using the whole cell patch-clamp technique,we found that ATP (50 µM) stimulated a whole cell current underisosmotic conditions. In addition, apyrase (2.5 U/ml), glibenclamide(100 µM), and gadolinium (10 µM) inhibited whole cell currents thatwere activated during hypotonic swelling. The inhibitory effect ofapyrase was reversed with the nonhydrolyzable analog adenosine5'-O-(3-thiotriphosphate) (50 µM), and the effect of glibenclamide or gadolinium was reversed withATP (50 µM). Finally, anionic whole cell currents were activated withhypotonic swelling when ATP was the only significant charge carrier,suggesting that increases in cell volume led to ATP efflux through aconductive pathway. Taken together, these results indicate thatextracellular ATP stimulated cell volume decrease via aCa2+-dependent step that led toK+ efflux.

  相似文献   

12.
The mechanosensitive channel with large conductance of Escherichia coli is the first to be cloned among stretch-activated channels. Although its activity was characterized by a patch clamp method, a physiological role of the channel has not been proved. The marine bacterium, Vibrio alginolyticus, is sensitive to osmotic stress and cell lysis occurs under osmotic downshock. We introduced an mscL gene into Vibrio alginolyticus, and the mechanosensitive channel with large conductance functions was found to alleviate cell lysis by osmotic downshock. This is the first report to show a physiological role of the mechanosensitive channel with large conductance.  相似文献   

13.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

14.
Previous studies using the patch-clamp technique demonstrated the presence of a small conductance Cl(-) channel in the apical membrane of respiratory gill cells in primary culture originating from sea bass Dicentrarchus labrax. We used the same technique here to characterize potassium channels in this model. A K(+) channel of 123 +/- 3 pS was identified in the cell-attached configuration with 140 mM KCl in the bath and in the pipette. The activity of the channel declined rapidly with time and could be restored by the application of a negative pressure to the pipette (suction) or by substitution of the bath solution with a hypotonic solution (cell swelling). In the excised patch inside-out configuration, ionic substitution demonstrated a high selectivity of this channel for K(+) over Na(+) and Ca(2+). The mechanosensitivity of this channel to membrane stretching via suction was also observed in this configuration. Pharmacological studies demonstrated that this channel was inhibited by barium (5 mM), quinidine (500 microM), and gadolinium (500 microM). Channel activity decreased when cytoplasmic pH was decreased from 7.7 to 6.8. The effect of membrane distension by suction and exposure to hypotonic solutions on K(+) channel activity is consistent with the hypothesis that stretch-activated K(+) channels could mediate an increase in K(+) conductance during cell swelling.  相似文献   

15.
H Ohata  K Tanaka  K Momose 《Life sciences》1999,65(3):297-304
The effects of lysophosphatidic acid (LPA), a bioactive phospholipid, on the response of the cytosolic free Ca2+ concentration ([Ca2+]i) to hypotonic stress were studied in cultured bovine lens epithelial cells, to test whether LPA affects cellular swelling-mediated increase in [Ca2+]i, which may relate to formation of sugar cataracts. Exposure of the cells to a 30% hypotonic stress caused only a slight increase in [Ca2+]i. Pretreatment with LPA (10 microM) significantly augmented the hypotonic stress-induced [Ca2+]i response, whereas addition of LPA to the cells did not affect [Ca2+]i. The hypotonic stress-induced increase in [Ca2+]i in the presence of LPA was inhibited by Gd3+, a blocker of mechanosensitive cation channels, but not by nicardipine, a L-type Ca2+ channel blocker, or thapsigargin, an inhibitor of endoplasmic reticulum-ATPase pump. These results show that LPA sensitizes the response to hypotonic stress via increase in Ca2+ influx through Gd3+-sensitive stretch-activated ion channels, and not via Ca2+ release from intracellular stores. On the other hand, LPA did not affect the [Ca2+]i response to ATP, a Ca2+ mobilizing agonist. Therefore, LPA sensitizes the hypotonic stress-induced [Ca2+]i response in lens epithelial cells, suggesting that LPA potentiates the development of cataracts induced by cellular swelling such as sugar cataract.  相似文献   

16.
We have used current/voltage (I/V) analysis to investigate the role played by extracellular mucilage in the cellular response to osmotic shock in Lamprothamnium papulosum. Cells lacking extracellular mucilage originated in a brackish environment (1/3 seawater). These were compared, first with cells coated with thick (∼50 μm) extracellular mucilage, collected from a marine lake, and second, with equivalent mucilaginous marine cells, treated with heparinase enzyme to disrupt the mucilage layer. Histochemical stains Toluidine Blue and Alcian Blue at low pH identified the major component of the extracellular mucilage as sulfated polysaccharides. Treating mucilage with heparinase removed the capacity for staining with cationic dyes at low pH, although the mucilage was not removed, and remained as a substantial unstirred layer. Cells lacking mucilage responded to hypotonic shock with depolarization (by ∼95 mV), cessation of cyclosis, due to transient opening of Ca2+ channels, and opening of Ca2+-activated Cl channels and K+ channels. Cell conductance transiently increased tenfold, but after 60 min was restored to the conductance prior to hypotonic shock. Mucilaginous cells depolarized by a small amount (∼18 mV), but Ca2+ channels failed to open in large enough numbers for cyclosis to cease. Likewise most Ca2+-activated Cl channels failed to open and conductance increased only ∼1.2-fold above the prehypotonic level. After 60 min conductance was less than the conductance prior to hypotonic shock. Heparinased mucilaginous cells recovered several aspects of the hypotonic response in cells lacking mucilage. These cells depolarized (by ∼103 mV); cyclosis ceased, indicating that Ca2+ channels had opened, and conductance increased to ∼4 times the value prior to hypotonic shock, indicating that Ca2+-activated Cl channels opened. However, after 60 min, these cells had neither restored membrane potential (and remained at positive values), nor decreased their conductance. It was not possible to determine whether K+ channels had opened. The heparinased cells recovered the normal hypotonic response of mucilaginous cells when heparinase was washed out. Apical seawater cells, which lacked mucilage, were unaffected by heparinase treatment. The results demonstrate that the presence of extracellular sulfated polysaccharide mucilage impacts upon the electrophysiology of the response to osmotic shock in Lamprothamnium cells. The role of such sulfated mucilages in marine algae and animal cells is compared and discussed. Received: 24 March 1998/Revised: 28 April 1999  相似文献   

17.
Using spectrofluorescence imaging of fura-2 loaded renal A6 cells, we have investigated the generation of the cytosolic Ca2+ signal in response to osmotic shock and localized membrane stretch. Upon hypotonic exposure, the cells began to swell prior to a transient increase in [Ca2+] i and the cells remained swollen after [Ca2+] i had returned towards basal levels. Exposure to 2/3rd strength Ringer produced a cell volume increase within 3 min, followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also produced a transient increase in [Ca2+] after a delay of 22 sec. Both the RVD and [Ca2+] i response to hypotonicity were inhibited in a Ca2+-free bathing solution and by gadolinium (10 μm), an inhibitor of stretch-activated channels. Stretching the membrane by application of subatmospheric pressure (-2 kPa) inside a cell-attached patch-pipette induced a similar global increase in [Ca2+] i as occurred after hypotonic shock. A stretch-sensitive [Ca2+] i increase was also observed in a Ca2+-free bathing solution, provided the patch-pipette contained Ca2+. The mechanosensitive [Ca2+] i response was by gadolinium (10 μm) or Ca2+-free pipette solutions, even when Ca2+ (2 mm) was present in the bath. Long-term (>10 min) pretreatment of the cells with thapsigargin inhibited the [Ca2+] i response to hypotonicity. These results provide evidence that cell swelling or mechanical stimulation can activate a powerful amplification system linked to intracellular Ca2+ release mechanisms. Received: 3 August 1998/Revised: 19 November 1998  相似文献   

18.
Mechanosensitive (MS) channels allow cells to sense and respond to environmental changes. In bacteria, these channels are believed to protect against an osmotic shock. The physiological function of these channels has been characterized primarily by a standardized assay, where aliquots of batch-cultured cells are rapidly pipetted into a hypotonic medium. Under this method, it has been inferred many types of MS channels (MscS homologs in Escherichia coli) demonstrate limited effectiveness against shock, typically rescuing less than 10% of the cells when expressed at native levels. We introduce a single-cell-based assay which allows us to control how fast the osmolarity changes, over time scales ranging from a fraction of a second to several minutes. We find that the protection provided by MS channels depends strongly on the rate of osmotic change, revealing that, under a slow enough osmotic drop, MscS homologs can lead to survival rates comparable to those found in wild-type strains. Further, after the osmotic downshift, we observe multiple death phenotypes, which are inconsistent with the prevailing paradigm of how cells lyse. Both of these findings require a reevaluation of our basic understanding of the physiology of MS channels.  相似文献   

19.
比较研究了几种破碎大肠杆菌细胞的方法,如渗透压法、超声波法、玻珠震碎法、玻珠研磨法、有机溶剂法、冻融法以及盐酸胍/EDTA法等,以确定出一种简单、快速、高效的破碎重组大肠杆菌细胞的方法获得粪产碱杆菌青霉素G酰化酶(AfPGA)用于后续试验。结果表明玻珠震碎法、超声波法和渗透压法是较优的细胞破碎方法,活力回收率分别为99.7%、78.4%、60.7%,其他方法均低于22%。而比活力以渗透压法为最高,达到4.40 U/mg。  相似文献   

20.
We have previously reported that ATP-inhibitable K+channels, in vesicles derived from the basolateral membrane ofNecturus maculosus small intestinal cells, exhibit volumeregulatory responses that resemble those found in the intact tissueafter exposure to anisotonic solutions. We now report that increases inK+ channel activity can also be elicited by exposure ofthese vesicles to isotonic solutions containing glucose or alanine thatequilibrate across these membranes. We also demonstrate that swellingafter exposure to a hypotonic solution or an isotonic solutioncontaining alanine or glucose reduces inhibition of channel activity byATP and that this finding cannot be simply attributed to dilution ofintravesicular ATP. We conclude that ATP-sensitive, stretch-activated K+ channels may be responsible for the well-establishedincrease in basolateral membrane K+ conductance ofNecturus small intestinal cells after the addition of sugarsor amino acids to the solution perfusing the mucosal surface, and wepropose that increases in cell volume, resulting in membrane stretch,decreases the sensitivity of these channels to ATP.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号