首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anxiolytic agents, buspirone and diazepam, increase the paw lick latency of rats in hot plate test, the effect being dose-dependent and exceeding that of morphine. The action of buspirone was not accompanied by ataxic and sedative effects which were observed in rats on diazepam. Buspirone (up to 25 mg/kg) and diazepam (up to 5 mg/kg) neither change the tail flick latency nor potentiate the action of morphine in this test. The effect of buspirone on the paw lick reaction in rats may be related to the inhibition of emotional-motivation component of pain reaction.  相似文献   

2.
Increased gastrointestinal motility in mice as one of the withdrawal symptoms of commonly abused drugs like diazepam or morphine and its possible mechanism of action was studied. Male Laka mice (20-25 g) were made addict to either diazepam (20 mg/kg, ip for 7 days) or morphine (10 mg/kg, sc for 9 days). Withdrawal symptoms were noted 24 hr after the last injection of diazepam or morphine. The animals were injected with Ro 15-1788 (flumazenil) (1 mg/kg, ip) or naloxone (2 mg/kg, ip) in the respective group to precipitate the withdrawal symptoms. Gastrointestinal motility was assessed by charcoal-meal test. Animals developed tolerance to acute sedative effect of diazepam, and similarly to the acute nociceptive action of morphine. On abrupt cessation of these drugs after chronic treatment the animals showed hyperlocomotion and hyperreactivity in diazepam withdrawal group and hyperalgesia on hot plate in morphine withdrawal groups, respectively. Increase in gastrointestinal motility was observed in all the drug withdrawal groups. Treatment with respective antagonists, Ro 15-1788 (flumazenil) and naloxone precipitated the withdrawal symptoms. The results suggest the involvement of both central and peripheral receptors of benzodiazepines and opioid (mu) receptors in the withdrawal symptoms of the benzodiazepines and morphine, respectively.  相似文献   

3.
AIMS: The aim of the present study was to evaluate the antinociceptive effect of the novel pyrazoline methyl ester: 4-methyl-5-trifluoromethyl-5-hydroxy-4,5-dihydro-1H-pyrazole methyl ester (MPF4). MAIN METHODS: The effect of MPF4 was assessed in two models of pain: arthritic pain caused by Complete Freund's Adjuvant (CFA) and postoperative pain caused by surgical incision in mice. KEY FINDINGS: MPF4 given intraperitoneally (1.0 mmol/kg, i.p.) produced marked antinociception in inflammatory allodynia caused by CFA. The antinociceptive effect produced by MPF4 was reversed with the pre-treatment of animals with naloxone or naltrindole. Oral administration of MPF4 (1.0 mmol/kg, p.o), dipyrone (1.0 mmol/kg, p.o.) and morphine (0.026 mmol/kg, p.o.) also produced an anti-allodynic effect. However, none of the compounds evaluated reversed the paw edema produced by CFA. Moreover, MPF4, dipyrone and morphine also produced an anti-allodynic effect in the surgical incisional pain model. The maximal inhibitions obtained with preemptive drug treatment were 66+/-7%, 73+/-9% and 88+/-8% for MPF4 (1.0 mmol/kg, p.o.), dipyrone (1.0 mmol/kg, p.o.) and morphine (0.026 mmol/kg, p.o.), respectively. The maximal inhibitions obtained with curative drug treatment were 53+/-9%, 83+/-7% and 84+/-7%, for MPF4, dipyrone and morphine, respectively. Unlike indomethacin, MPF4 did not induce gastric lesions at the dose that caused the highest antinociception (1.0 mmol/kg, p.o). The anti-allodynic action of MPF4, dipyrone and morphine was not associated with impairment of motor activity. SIGNIFICANCE: The results of the present study suggest that MPF4 represents a potential target for the development of new drugs to treat persistent inflammatory pain.  相似文献   

4.
The antinociceptive effect of the methanolic extract (ME) and two triterpenes isolated from E. mosenii (Orchidaceae) has been investigated in chemical and thermal models of nociception in mice. The ME of E. mosenii (0.3-30 mg kg(-1), i.p. or 50-400 mg kg(-1), p.o.) produced dose-related, significant and long-lasting (4 to 6 h) inhibition of acetic acid-induced abdominal constriction, with ID50 values of 3.9 and 137.0 mg kg(-1), respectively. Pholidotin and 24-methylenecycloartenol isolated from E. mosenii (0.1-3.0 mg kg(-1), i.p.) also produced marked and dose-related inhibition of acetic acid-induced pain, with ID50 values of 0.9 and 1.1 mg kg(-1). However, these compounds and the ME were about 3- to 13-fold more potent at the level of ID50 than diclofenac when assessed in acetic acid-induced abdominal constriction. The ME of E. mosenii in the same range of doses produced dose-related inhibition of both phases of formalin-induced licking, with mean ID50 values for the first and the second phases of 0.9, 122.0 mg kg(-1) and 0.7, 258.0 mg kg(-1), respectively by i.p. or p.o. routes. In addition, the ME (0.3-30 mg kg(-1), i.p., or 50-400 mg kg(-1), p.o.) also caused dose-related inhibition of capsaicin-induced neurogenic pain with mean ID50 values of 5.2 and 130.0 mg kg(-1), respectively. Treatment of animals with naloxone (5 mg kg(-1), i.p.) completely reversed the antinociceptive effect caused by morphine (5 mg kg(-1), s.c.) and that caused by ME of E. mosenii (1 mg kg(-1), i.p.) when assessed against either phase of the formalin-induced pain. Furthermore, when assessed in the hot-plate test, ME (100 mg kg(-1), i.p.) and morphine (10 mg kg(-1), s.c.) caused significant increase in response latency. However, ME given daily for to 7 consecutive days did not develop tolerance to itself nor did it induce cross-tolerance to morphine. Taken together these data demonstrate that the ME of E. mosenii elicited pronounced antinociception, when assessed by i.p. or p.o. routes, against several models of pain. Its actions involve, at least in part, an interaction with opioid system, seeming no to be related with a non-specific peripheral or central depressant actions. Finally, the active principle(s) responsible for the antinociceptive action of E. mosenii is likely related to the presence of the triterpenes.  相似文献   

5.
The interaction of sodium pentobarbital with morphine sulfate in both morphine-tolerant and non-tolerant rats was investigated using the tail-compression test for analgesia. Male Sprague-Dawley rats (300–350 g) were given pentobarbital (4, 8, or 16 mg/kg) 5 min before morphine (2, 4, 6, or 8 mg/kg). Control animals received two saline injections, or pentobarbital plus saline, or saline plus morphine. All injections were subcutaneous. Prior to the first injection, a baseline nociceptive threshold was determined for each rat by applying a modified micrometer to its tail and increasing the pressure until a squeak was elicited. Test readings were taken every half-hour for 2 hr beginning 30 min after the second injection. For the chronic studies, animals were first made tolerant to morphine by the administration of the narcotic twice a day for 3 days, increasing the dose from 10 to 50 mg/kg/injection. Identical testing procedures were then followed with these rats except that the test dose of morphine given on day 4 was in the range 8–128 mg/kg. It was found that Na pentobarbital, in the subanesthetic doses used, had neither antinociceptive nor hyperalgesic properties. Furthermore, the barbiturate had no effect on the antinociceptive action of morphine in either morphine-tolerant or non-tolerant rats.  相似文献   

6.
《Life sciences》1997,61(26):PL427-PL433
Intermittent morphine pretreatment (10 mg/kg/day for 14 days) induced long-lasting (one month post-treatment) sensitization to the locomotor effects of morphine and amphetamine in rats. Co-administration of the non-competitive NMDA-receptor antagonist dizocilpine (MK-801) (0.1 mg/kg) with morphine did not prevent the development of long-term behavioural sensitization. However, this dose of MK-801 did cause long-term sensitization to its own locomotor effects. Co-administration of 0.25 mg/kg MK-801 with morphine caused death in 60% of the animals. In the animals that survived MK-801 plus morphine pretreatment, neither short-term (3 days) nor long-term morphine-induced sensitization was observed. MK-801 alone (0.25 mg/kg/day for 14 days) induced short-term cross-sensitization to morphine. Thus, the development of long-term morphine-induced locomotor sensitization could only be prevented by a dose of MK-801 that yields a lethal combination with morphine. In addition, MK-801 induced sensitization to its own locomotor effects and cross-sensitization to morphine. These findings seriously question whether MK-801 can be used to study the development of morphine-induced behavioural sensitization. © 1997 Elsevier Science Inc.  相似文献   

7.
M A Jones  G R Spratto 《Life sciences》1977,20(9):1549-1555
The technique of morphine pellet implantation was used to produce physical dependence on morphine in male rats. The number of “wet dog” shakes occurring within a period of 30 minutes during naloxone-precipitated (1.0 mg/kg, s.c.) withdrawal in four-day morphine implanted rats was determined after either acute or chronic treatment with ethanol. An acute dose of ethanol administered prior to withdrawal had no significant effect on the withdrawal response whereas chronic administration of ethanol during the development of dependence on morphine significantly suppressed the naloxone-precipitated withdrawal response to 44–57 percent of the control response. Analysis of brain and plasma for morphine concentration four days following dependence development showed no significant differences between morphine controls and those animals treated with both morphine and ethanol. Pentobarbital, another central nervous system depressant, demonstrated no effect on the withdrawal response, whether administered acutely or chronically during the development of dependence.  相似文献   

8.
Announcements     
Dosing‐time–dependent changes in the effect and toxicity of morphine were examined in mice housed under alternating 12 h light (07:00 to 19:00 h) and dark (19:00 to 07:00 h) cycles. Morphine (0.5 mg/kg) was injected intraperitoneally (i.p.) in animals to assess its beneficial effect (i.e., protection against the kaolin‐induced, bradykinin‐mediated, writhing reaction) and its toxicity (i.e., alteration of the hepatic enzymes of aspartate aminotransferase [AST] alanine aminotransferase [ALT], and glutathione [GSH] in separate experiments). The magnitude of the analgesic effect of morphine depended on dosing time, with minimum effect at 02:00 h and maximum effect at 14:00 h. The serum hepatic enzyme levels of AST and ALT increased after dosing morphine (100 mg/kg) at 02:00 and 14:00 h. Time courses of these enzymes did not differ between the two trials. However, hepatic GSH, which is involved in the detoxification of chemical compounds, significantly decreased after i.p. morphine injection at 02:00 but not at 14:00 h. Overall, the results suggest that the analgesic effect of morphine is greater after dosing during the resting than during the activity phase of mice that have been induced with bradykinin‐mediated pain. Drug‐induced hepatic damage as inferred by GSH alteration, however, may be greater after dosing during the active phase.  相似文献   

9.
Dosing-time-dependent changes in the effect and toxicity of morphine were examined in mice housed under alternating 12 h light (07:00 to 19:00 h) and dark (19:00 to 07:00 h) cycles. Morphine (0.5 mg/kg) was injected intraperitoneally (i.p.) in animals to assess its beneficial effect (i.e., protection against the kaolin-induced, bradykinin-mediated, writhing reaction) and its toxicity (i.e., alteration of the hepatic enzymes of aspartate aminotransferase [AST] alanine aminotransferase [ALT], and glutathione [GSH] in separate experiments). The magnitude of the analgesic effect of morphine depended on dosing time, with minimum effect at 02:00 h and maximum effect at 14:00 h. The serum hepatic enzyme levels of AST and ALT increased after dosing morphine (100 mg/kg) at 02:00 and 14:00 h. Time courses of these enzymes did not differ between the two trials. However, hepatic GSH, which is involved in the detoxification of chemical compounds, significantly decreased after i.p. morphine injection at 02:00 but not at 14:00 h. Overall, the results suggest that the analgesic effect of morphine is greater after dosing during the resting than during the activity phase of mice that have been induced with bradykinin-mediated pain. Drug-induced hepatic damage as inferred by GSH alteration, however, may be greater after dosing during the active phase.  相似文献   

10.
The effect of intrathecal pertussis toxin on morphine dependence was studied in rats suffering from chronic pain (Freund's adjuvant-induced arthritis). Animals were rendered tolerant-dependent by subcutaneous implantation of 3 pellets of 75 mg morphine base each. In both, normal and arthritic animals, 1 microgram pertussis toxin reduced the analgesia induced by morphine in the tail-flick test. Naloxone (1 mg/kg, s.c.) precipitated a withdrawal syndrome in arthritic animals that was milder in respect to the one produced in normal rats. Pretreatment with pertussis toxin significantly diminished the incidence of withdrawal signs such as jumps, squeak on touch, chattering, ptosis, body shakes and diarrhoea in tolerant-dependent normal rats, while this effect could not be observed in animals suffering from chronic pain. This differential activity of the toxin could be due to the altered tonus of certain neurotransmitter systems that accompanies the chronic situation of pain.  相似文献   

11.
We have previously reported that serotonin concentration was reduced in the brain of mice with neuropathic pain and that it may be related to reduction of morphine analgesic effects. To further prove this pharmacological action, we applied fluoxetine, a selective serotonin reuptake inhibitor, to determine whether it suppressed neuropathic pain and examined how its different administration routes would affect antinociceptive and antiallodynic effects of morphine in diabetic (DM) and sciatic nerve ligation (SL) mice, as models of neuropathic pain. Antiallodynia and antinociceptive effect of drugs were measured by using von Frey filament and tail pinch tests, respectively. Fluoxetine given alone, intracerebroventicularly (i.c.v., 15 microg/mouse) or intraperitoneally (i.p., 5 and 10 mg/kg) did not produce any effect in either model. However, fluoxetine given i.p. enhanced both antiallodynic and antinociceptive effects of morphine. Administration of fluoxetine i.c.v., slightly enhanced only the antiallodynic effect of morphine in SL mice. Ketanserine, a serotonin 2A receptor antagonist (i.p., 1 mg/kg) and naloxone, an opioid receptor antagonist (i.p., 3 mg/kg), blocked the combined antinociceptive effect of fluoxetine and morphine. Our data show that fluoxetine itself lacks antinociceptive properties in the two neuropathy models, but it enhances the analgesic effect of morphine in the periphery and suggests that co-administration of morphine with fluoxetine may have therapeutic potential in treatment of neuropathic pain.  相似文献   

12.
A Bianchetti  A Guidice  F Nava  L Manara 《Life sciences》1986,39(24):2297-2303
Mice were rendered physically dependent by repeated administration of morphine, 25 mg/kg s.c., 5 times daily for 4 days, and on the 5th day, 2 h after the last morphine dose, they were challenged with a s.c. injection of either naloxone, 25 mg/kg, or the peripherally selective opioid antagonist SR 58002 C (N-methyl levallorphan mesilate), 75 mg/kg. Naloxone provoked jumping and diarrhea in all the animals; mice challenged with SR 58002 C presented no significant jumping but a high frequency of withdrawal diarrhea. When naloxone, 12 mg/kg, or SR 58002 C, 50 mg/kg, were given s.c. in combination with repeated morphine as above, mice which had received naloxone with morphine presented virtually no diarrhea or jumping upon naloxone challenge; those repeatedly treated with morphine plus SR 58002 C were substantially protected from naloxone-precipitated diarrhea, but not jumping. These results further support the remarkable selectivity for peripheral opioid receptors of SR 58002 C, even after repeated high-dose treatment, and are strongly consistent with the primary role of a local intestinal mechanism in the development and expression of opioid withdrawal diarrhea in mice. The in vivo dissociation of central and peripheral components of dependence on morphine is illustrated, apparently for the first time.  相似文献   

13.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

14.
研究一种新型的N型电压敏感性钙通道阻断剂虎纹蜘蛛毒素 Ⅰ (HWTX Ⅰ ) ,硬脊膜外腔用药对福尔马林结肠壁粘膜下注射诱导的大鼠急性炎性内脏疼痛的抑制性效应 .5 %福尔马林溶液15 0 μl快速注入SD大鼠乙状结肠壁粘膜下层 ,可产生几种可评估的反映内脏疼痛的固定性行为 .在此伤害性刺激反应前 30min ,经留置的导管向大鼠硬脊膜外腔分别注入各待测药品和试剂 ,观察其对该模型疼痛行为的影响 .与生理盐水阴性对照组 ,美国同类镇痛新药ω 芋螺毒素 (ω CTX MVIIA)和吗啡两个阳性对照组比较 ,HWTX Ⅰ五个剂量组 ,进行大鼠硬脊膜外腔注药 ,均能以剂量依赖方式明显抑制福尔马林结肠壁注射诱导的伤害性行为反应 .HWTX Ⅰ和ω CTX MVIIA在 2 0μg kg体重剂量时 ,其抑制效果是稳定和明显的 ;在 5 0 70 μg kg体重剂量下 ,抑制效果更为显著 .HWTX Ⅰ量 效实验发现 ,在等剂量下 ,ω CTX MVIIA镇痛效果略高于HWTX Ⅰ .但在 5 0~ 75 μg kg较高剂量下 ,ω CTX MVIIA可能引起大鼠产生明显的运动能力障碍 ,而HWTX Ⅰ在该剂量范围内则未见类似的毒副作用 .盐酸吗啡镇痛作用起效快于HWTX Ⅰ和ω CTX MVIIA ,但维持时间较后二者短 .实验结果表明 :同为多肽类N型电压敏感性钙通道拮抗剂 ,HWTX Ⅰ和ω CTX MVIIA大鼠硬脊  相似文献   

15.
Opioid analgesics devoid of central side effects are unmet medical need in the treatment of acute pain (e.g. post-operative pain). Recently, we have reported on 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), a novel opioid agonist of high efficacy producing peripheral antinociception in subchronic inflammatory pain in certain doses. The present study focused on the antinociceptive effect of 14-O-MeM6SU compared to morphine in formalin test of an early/acute (Phase I) and late/tonic (Phase II) pain phases. Subcutaneous 14-O-MeM6SU (253–1012 nmol/kg) and morphine (3884–31075 nmol/kg) dose dependently reduced the pain behaviors of both phases. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid antagonist, abolished the antinociceptive effect of 506 nmol/kg 14-O-MeM6SU. On the other hand, the effects of 14-O-MeM6SU (1012 nmol/kg) and morphine (15538 nmol/kg) were only partially affected by NAL-M, indicating the contribution of CNS to antinociception. Locally injected test compounds into formalin treated paws caused antinociception in both phases. Locally effective doses of test compounds were also injected into contralateral paws. Morphine showed effects in both phases, 14-O-MeM6SU in certain doses failed to produce antinociception in either phase. A NAL-M reversible systemic dose of 14-O-MeM6SU and the lowest systemic effective dose of morphine were evaluated for their sedative effects following isoflurane-induced sleeping (righting reflex). In contrast to morphine, 14-O-MeM6SU in certain antinociceptive doses showed no impact on sleeping time. These data highlight that high efficacy opioids of limited CNS penetration in certain doses mitigate somatic and inflammatory pain by targeting MOR at the periphery.  相似文献   

16.
Central or systemic administration of agonists directed at the mu or delta opiate receptors generally produce a greater degree of analgesia in males than in females. To date, most studies examining sex-based differences in opioid analgesia have used acute noxious stimuli (i.e., tail-flick and hot plate test); thus the potential dimorphic response of centrally acting opiates in the alleviation of persistent inflammatory pain is not well established. In the present study, right hind paw withdrawal latency (PWL) to radiant thermal stimuli was measured in intact male and cycling female Sprague-Dawley rats before and after unilateral hind paw injection of the inflammatory agent complete Freund's adjuvant (CFA). Control animals received intraplantar injection of saline. Twenty four hours after CFA or saline injection, animals received either saline or morphine bisulfate (0.5-15 mg/kg sc). Separate groups of control or inflamed animals were tested on their responsiveness to morphine at 7, 14, and 21 days post-CFA or saline. No sex differences were noted for baseline PWLs, and females displayed slightly less thermal hyperalgesia at 24 h post-CFA. At all morphine doses administered, both the antihyperalgesic effects of morphine in the inflamed animals and the antinociceptive effects of morphine in control animals were significantly greater in males compared with females. Similarly, in males, the antihyperalgesic effects of morphine increased significantly at 7-21 days post-CFA; no significant shift in morphine potency was noted for females. These studies demonstrate sex-based differences in the effects of morphine on thermal hyperalgesia in a model of persistent inflammatory pain.  相似文献   

17.
The effects of oral hypoglycaemic drugs, SPC-703 (n-/p-toluenesulphonyl/-5-methyl-2-pirazoline-1-carbonami de) and tolbutamide on insulin binding and glucose metabolism by isolated adipocytes were studied. After 10 days of administration of both sulphonylurea derivatives, no differences were observed in insulin concentration between both experimental and the control groups of animals, despite a significant fall in blood glucose level. SPC-703 and tolbutamide in concentrations of 1 mM added in vitro to the suspension of adipocytes had no effect on insulin binding or on basal and insulin simulated glucose metabolism. Daily administration of 300 mg/kg body weight of SPC-703 or tolbutamide for 10 days resulted in 48% and 34% increase of specific binding of insulin by adipocytes, respectively. From the Scatchard plot analysis we noted that the increase of binding resulted from increased affinity of insulin receptors for hormone. Simultaneous increase in basal and insulin stimulated glucose metabolism by adipocytes, as measured by 14CO2 production and 14C incorporation into cellular lipids, was observed. The results indicate that hypoglycaemic action of sulphonylureas may be explained by increased affinity of insulin receptors and the stimulating action of these compounds on peripheral glucose metabolism.  相似文献   

18.
The initial threshold of pain sensitivity and the degree of morphine analgesia (12, 12, 70 mg/kg, i. p.) were assessed during mechanical, thermal and electrical stimulation, respectively, in noninbred white male mice. Two tests were performed, the second a week after the first one. A slight positive correlation (r = +0.39) between the initial threshold of pain reaction and the analgetic effect of morphine was found only during electrical stimulation in the first test, and positive correlation between the first and the second test during electrical and mechanical stimulation (0.34 and 0.27, respectively) was determined. The degree of morphine analgesia in different animals during second testing could either increase or decrease. It is suggested that previous testing of morphine analgetic effect cannot predict the efficacy of analgesia during the second testing and that the initial threshold of pain sensitivity cannot serve as a reliable predictor of morphine analgesia level.  相似文献   

19.
H N Bhargava  P Ramarao 《Peptides》1989,10(4):767-771
Comparative effects of Pro-Leu-Gly-NH2 (MIF) and cyclo(Leu-Gly) (CLG) administered orally at different stages of chronic morphine treatment on the development of tolerance to the analgesic effect of morphine in the rat were determined. Male Sprague-Dawley rats were implanted with either 6 placebo or morphine pellets during a 7-day period. Implantation of morphine pellets resulted in the development of a high degree of tolerance as evidenced by a decrease in the analgesic response to morphine. Administration of CLG (8 and 16 mg/kg/day) on day 5, 6 and 7 of implantation inhibited the development of tolerance to morphine but 4 and 32 mg/kg doses had no effect. Further, CLG (2 mg/kg/day for 7 days) inhibited the development of tolerance but higher doses (4 and 8 mg/kg) had no effect. MIF (26 and 52 mg/kg) administered orally on the last three days of the implantation schedule inhibited the development of tolerance to morphine. MIF (6.5 mg/kg/day for 7 days) inhibited the development of tolerance but the higher doses had no effect. Concurrent administration of MIF (6.5 mg/kg) and CLG (2 mg/kg) for seven days failed to inhibit the development of tolerance. A single dose of MIF or CLG administered a day before the assessment of tolerance did not affect the morphine tolerance. Thus, even after a significant degree of tolerance to morphine had developed, neuropeptides like MIF and CLG given orally, in appropriate doses, can inhibit development of tolerance to morphine and restore the analgesic effect of morphine.  相似文献   

20.
Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p < 0.05), while exposure to the non resonant random EMFs exerted no effects. Additionally, naloxone administration inhibited the analgesic effects of the NMR spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号