共查询到20条相似文献,搜索用时 0 毫秒
1.
Hervé Colinet Vanessa Larvor Raphaël Bical David Renault 《Metabolomics : Official journal of the Metabolomic Society》2013,9(3):608-622
In spite of the extensive knowledge of the biology and the genetics of Drosophila melanogaster, the mechanisms by which this fly builds up cold tolerance remain poorly understood. Recent studies have reported that acclimation-mediated acquisition of cold tolerance is associated with moderate accumulation of sugars in drosophilids. However, it is not known whether there is a genuine causative link between cold tolerance and body sugar accumulation in Drosophila flies. We thus tested whether increasing body sugars levels, via dietary enrichment, will promote the cold tolerance of D. melanogaster adults. We gradually augmented the concentration of four different sugars (sucrose, fructose, glucose and trehalose) in rearing diets and tested the basal cold tolerance (acute and chronic). Using SIM-GC/MS approach, we verified whether feeding of larvae and adults on sugar-enriched diets was associated with increasing body sugars. We also tested whether development, body mass, fat stores, metabolites composition and metabolic pathways were altered by these dietary manipulations. The data confirm an effective incorporation of all sugars. Contrary to the expectation, cold tolerance was negatively affected by exogenous sugars, especially when supplemented at high concentrations. Rearing on high-sugar doses induced system-wide metabolic alteration associated with carbohydrate metabolism imbalance, a developmental delay and a fresh mass reduction. Our data show that high dietary sugars create a metabolic imbalance and negatively affect cold tolerance. This study provides an intriguing connection between nutritional conditions and thermal trait. It also underlines that careful attention should be given to dietary factors when studying thermal traits. 相似文献
2.
Antifreeze protein 1 (DAFP-1), from the beetle Dendroides canadensis, was expressed in Drosophila melanogaster. Mean thermal hysteresis values (the difference between freezing and melting points), indicative of antifreeze protein activity, in the hemolymph of transgenic flies were found to be as high as 6.23+/-0.10 degrees C (using the nanoliter osmometer). Direct comparisons of the capillary and nanoliter osmometer techniques for measuring THA were made, illustrating the much higher values obtained by the latter. Transgenic Drosophila had supercooling points, both in contact with ice and not, that were slightly, but significantly, lower than wild-type controls (1.5-2.0 degrees C and 2.0-4.0 degrees C, respectively). The results indicate functionality of DAFP-1 in Drosophila melanogaster (the ability of DAFP-1 to inhibit both inoculative freezing across the cuticle and freezing initiated by endogenous ice nucleators). The much larger effects of DAFPs in inhibiting inoculative freezing and ice nucleation in Dendroides canadensis relative to the transgenic Drosophila may partially result from the lower DAFP concentrations and activities in Drosophila, however the absence of multiple types of DAFPs and absence of tissue specific expression may also contribute. Transgenic Drosophila were also able to live significantly longer than controls at 0 degrees C and 4 degrees C, indicating that DAFP-1 is able to increase cold tolerance at above freezing temperatures. 相似文献
3.
Hyperactive spruce budworm antifreeze protein expression in transgenic Drosophila does not confer cold shock tolerance 总被引:2,自引:0,他引:2
Drosophila melanogaster, a freeze intolerant and cold shock sensitive insect, was transformed with the hyperactive insect antifreeze protein gene (AFP) from the spruce budworm, Choristoneura fumiferana. Transformation P-element constructs (pCasper) were made with CfAFP 337 isoform DNA using a strong constitutive promoter, Actin 5c. This is the first report of insect AFP used to transform another insect. Properly folded active insect AFP was only detected when signal sequences were used to target proteins to the endoplasmic reticulum for secretion into the hemolymph. The 18 residue Drosophila binding protein signal sequence (BiP) constructs resulted in transformed fly lines with significantly higher AFP expression in hemolymph than when the native C. fumiferana AFP signal sequence was used. The resultant transgene fly lines have the highest levels of thermal hysteresis, 0.8 degrees C, seen for any engineered Drosophila. Despite the high level of expression, even higher than some overwintering fish with natural levels of endogenous AFP, the transformants did not display any cold shock resistance compared to controls or low AFP expressing lines. These results indicate that insect AFP alone cannot protect Drosophila from cold shock and may not be useful for Drosophila cryopreservation. 相似文献
4.
Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster 总被引:2,自引:0,他引:2
Abstract.
- 1 In Drosophila melanogaster, the cold-shock tolerance of adult flies at -7°C increased 22% after a prior 2h exposure to 4°C as measured by LD50, the dose (degree minutes of exposure to subzero temperature) which resulted in 50% mortality.
- 2 Cold-shock tolerance was further significantly increased by selecting cold resistant lines by exposure of adults (1) to 4°C for 2 h (short-term chilling), or (2) to -7°C for 80–120 min (cold shock), or (3) to short-term chilling followed by cold-shock.
- 3 After ten generations of selection, the greatest increase in cold-shock tolerance was found in flies selected using the combined exposure of short-term chilling and cold shock. LD50s increased 33% in comparison with the unselected control strain when no chilling pre-treatment was given prior to cold shock at -7°C.
- 4 The rapid cold-hardening response increased 82% in the line selected by the short-term chilling and cold-shock regime.
- 5 The enhanced cold-shock tolerance was relatively stable since no decrease was observed after four generations without selection.
- 6 This report shows the role of short-term adaptation as well as selection in the capacity to survive low temperatures in non-diapausing stages of insects.
5.
6.
CHARLES S. BURKS RICHARD L. STEWART Jr GLEN R. NEEDHAM RICHARD E. LEE Jr 《Physiological Entomology》1996,21(1):44-50
Abstract. Supercooling points and chill tolerance were compared among nymphs and adults of the ixodid ticks Dermacentor variabilis, Amblyomma americanum and Ixodes scapularis (Acari: Ixodidae).Supercooling points in the range of <-22 to -18°C were observed for nymphs, and -22 to -8°C for adults.The lower lethal temperatures observed under dry conditions, -14 to -10°C, were warmer than the supercooling points, but still much colder than -4.8°C, the lowest temperature recorded from a likely tick habitat in southwestern Ohio.Based on our experiments, spontaneous freezing and direct chilling injury are not significant mortality factors in these species in the field.Mortality was observed between -5 and -3°C for A.americanum and D.variabilis nymphs chilled for 2 h while in direct contact with ice.This mortality is probably due to inoculative freezing.Given the requirement for a rather humid microhabitat for off-host survival, these findings suggest that inoculative freezing is an important cause of overwintering mortality in these medically important species. 相似文献
7.
Bernard P. Duncker J. Anne Hermans Peter L. Davies Virginia K. Walker 《Transgenic research》1996,5(1):49-55
We have usedDrosophila melanogaster as a model system for the transgenic expression of cystine-rich Type II antifreeze protein (AFP) from sea raven. This protein was synthesized and secreted into fly haemolymph where it migrated as a larger species (16 kDa) than the mature form of the protein (14 kDa) as judged by immunoblotting.Drosophila-produced Type II AFP demonstrated antifreeze activity both in terms of thermal hysteresis (0.13 °C) and inhibition of ice recrystallization. Recombinant AFP was purified and N-terminal sequencing revealed a 17 aa extension that began at the predicted signal peptide cleavage point. The expression of all three AFP types in transgenicDrosophila has now been achieved. We conclude that the globular Type II and Type III AFPs are better choices for antifreeze transfer to other organisms than is the more widely used linear Type I AFP. 相似文献
8.
Presgraves DC 《Current biology : CB》2005,15(18):1651-1656
Evolutionary theory predicts that the rate and level of adaptation will be enhanced in sexual relative to asexual genomes because sexual recombination facilitates the elimination of deleterious mutations and the fixation of beneficial ones by natural selection. To date, the most compelling evidence for this prediction comes from experimental evolution studies and from loci completely lacking recombination, such as those on Y chromosomes, which often show reduced adaptation and even degeneration. Here, by analyzing replacement and silent DNA polymorphism and divergence at 98 loci, I show that recombination increases the efficacy of protein adaptation throughout the genome of the fruit fly Drosophila melanogaster. Genes residing in genomic regions with reduced recombination rates suffer a greater load of segregating, mildly deleterious mutations and fix fewer beneficial mutations than genes residing in regions with higher recombination rates. These findings suggest that the capacity to respond to natural selection varies with recombination rate across the genome, consistent with theory on the evolutionary advantages of sex and recombination. 相似文献
9.
Scotter AJ Kuntz DA Saul M Graham LA Davies PL Rose DR 《Protein expression and purification》2006,47(2):374-383
We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis. 相似文献
10.
11.
Abstract Cross tolerance, whereby tolerance to one environmental stress is correlated with tolerance to other stressors, is thought to be widespread in insects. We used lines of Drosophila melanogaster Meigen (Diptera: Drosophilidae) selected for survival at a 1-h exposure to −5°C to examine the extent to which this selection results in increased tolerance to other stresses, including high and low temperatures, desiccation and starvation. While selection improved tolerance to acute cold exposure and survival at −5°C, there was little effect of selection regime on tolerance to other stressors. There was no correlation between tolerances to any of the stressors, suggesting different mechanisms of tolerance. This supports arguments that correlations between stress tolerances during selection experiments with D. melanogaster may be coincidental. The magnitude of heat-hardening was apparently constrained by basal tolerance among lines, but the magnitude of the rapid cold-hardening response was not correlated with basal cold tolerance, implying that the relationship between inducible and basal tolerances differs at high and low temperatures. 相似文献
12.
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome. 相似文献
13.
Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster 总被引:3,自引:0,他引:3
Overgaard J Malmendal A Sørensen JG Bundy JG Loeschcke V Nielsen NC Holmstrup M 《Journal of insect physiology》2007,53(12):1218-1232
A short exposure to a mild cold stress is sufficient to increase cold tolerance in many insects. This phenomenon, termed rapid cold hardening (RCH) expands the thermal interval that can be exploited by the insect. To investigate the possible role of altered metabolite levels during RCH, the present study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive output. Cold shock caused a persistent disturbance of the metabolite profile that correlated well with a delayed onset of cold shock mortality. The disruption of metabolite homeostasis was smaller following RCH, where control levels were fully recovered after 72 h. RCH improved both survival and reproductive output after a subsequent cold shock but the RCH treatment alone was associated with costs in terms of reduced survival and reproductive output. The most pronounced changes following the RCH treatment were elevated levels of glucose and trehalose. Although, it is difficult to discern if a change in a specific metabolite is linked to physiological processes of adaptive, neutral or detrimental nature we observed that the onset and magnitude of the increased sugar levels correlated tightly with the improved chill tolerance following RCH. These findings suggest a putative role of cryoprotectants during RCH which are discussed in the light of the existing literature on the mechanistic background of RCH. 相似文献
14.
Insects can increase their resistance to cold stress when they are exposed to non-lethal conditions prior to the stress; these plastic responses are normally described only in terms of immediate effects on mortality. Here we examine in Drosophila melanogaster the short- and longer-term effects of different conditions on several measures of cold resistance, but particularly chill coma recovery. Short-term exposure to sublethal temperature (cold hardening) did not decrease chill coma recovery times even though it decreased mortality. Exposure to 12 degrees C for 2 days (acclimation) decreased chill coma recovery times for a range of stressful temperatures when flies were cultured at 25 degrees C, but did not usually affect recovery times when flies were cultured at 19 degrees C. In contrast, 2-day exposure to 12 degrees C decreased mortality regardless of rearing temperature. Rearing at 19 degrees C decreased mortality and chill coma recovery time relative to rearing at 25 degrees C. Acclimation increased the eclosion rate of eggs from stressed females, but did not affect development time or size of the offspring. These results indicate that plastic responses to cold in D. melanogaster are complex when resistance is scored in different ways, and that effects can extend across generations. 相似文献
15.
Strachan LA Tarnowski-Garner HE Marshall KE Sinclair BJ 《Physiological and biochemical zoology : PBZ》2011,84(1):43-53
Temperature is a primary determinant of insect and other ectotherm distribution and activity. Physiological and behavioral adaptations allow many insects to survive at subzero temperatures, yet the evolutionary influences on insect cold tolerance are unclear. Supercooling points, basal cold tolerance, cold-tolerance strategy, and inducible cold tolerance from rapid cold-hardening or acclimation were measured in a phylogenetically independent context in larvae of 27 phylogenetically diverse Drosophila species acquired from stock collections. Supercooling capacity is attributed primarily to physical factors, such as dry mass and water mass. Species of the obscura group were more resistant to acute cold tolerance than species of other groups within the genus, and plasticity in cold tolerance is constrained by phylogeny rather than by basal cold tolerance. The more cold-tolerant freeze-avoiding species appear to have arisen multiple times in Drosophila and are distinct from chill-susceptible species, which likely indicate the ancestral state. A phylogenetic influence is apparent on several measures of cold tolerance, which show considerable interspecific variation and indicate varying physiological mechanisms among Drosophila species when temperature limits are met. 相似文献
16.
17.
18.
19.
Animal aggregation is a general phenomenon in ecological systems. Aggregations are generally considered as an evolutionary advantageous state in which members derive the benefits of mate choice and protection against natural enemies, balanced by the costs of limiting resources and intraspecific competition. Many insects use chemical information to find conspecifics and to form aggregations. In this study, we describe a spatio-temporal simulation model designed to explore and quantify the effects of the strength of chemical attraction, on the colonization ability of a fruit fly (Drosophila melanogaster) population. We found that the use of infochemicals is crucial for colonizing an area. Fruit flies subject to an Allee effect that are unable to respond to chemical information could not successfully colonize the area and went extinct within four generations. This was mainly caused by very high mortality due to the Allee effect. Even when the Allee effect did not play a role, the random dispersing population had more difficulties in colonizing the area and is doomed to extinction in the long run. When fruit flies had the ability to respond to chemical information, they successfully colonized the orchard. This happened faster, for stronger attraction to chemical information. In addition, more fruit flies were able to find the resources and the settlement on the resources was much higher. This resulted in a reduced mortality due to the Allee effect for fruit flies able to respond to chemical information. Odor-mediated aggregation thus enhances the colonization ability of D. melanogaster. Even a weak attraction to chemical information paved the way to successfully colonize the orchard. 相似文献
20.
Ixodes scapularis can be infected with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp., Babesia microti, and Rickettsia spp., including spotted-fever group Rickettsia. As all of these microorganisms have been reported in Maryland, the potential for these ticks to have concurrent infections exists in this region. To assess the frequency of these complex infections, 348 I. scapularis nymphs collected in 2003 were screened for these microorganisms by PCR with positives being confirmed by DNA sequencing. Borrelia burgdorferi was detected in 14.7% of nymphs. Anaplasma phagocytophilum (0.3%), Rickettsia spp. (19.5%), and an uncategorized agent (0.9%) was also detected. Dual infections were detected with B. burgdorferi and Rickettsia spp. as well as a triple infection with B. burgdorferi, Rickettsia spp., and an uncategorized agent. Infections with B. burgdorferi and Rickettsia spp. were statistically independent of one another. However, infection with B. burgdorferi and any one of these other microorganisms appears to occur more frequently than by chance alone, probably as a result of shared enzootic cycles. This study confirms that multiple microorganisms co-circulate with B. burgdorferi in I. scapularis in Maryland and demonstrates that Rickettsia spp. and B. burgdorferi circulate independently and at nearly equal frequencies, while A. phagocytophilum and other unrecognized organisms are less common. 相似文献