首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well known that Notch signaling plays either oncogenic or tumor suppressive role in a variety of tumors, depending on the cellular context. However, in our previous study, we found that Notch1 was overexpressed while Notch2 downregulated in the majority of astrocytic gliomas with different grades as well as in glioblastoma cell lines U251 and A172. We had knocked down Notch1 by siRNA in glioblastoma cells, and identified that the cell growth and invasion were inhibited, whereas cell apoptosis was induced either in vitro or in vivo. For further clarification of the role of Notch2 in pathogenesis of gliomas, enforced overexpression of Notch2 was carried out with transfection of Notch2 expression plasmid in glioma cells and the cell growth, invasion and apoptosis were examined in vitro and in vivo in the present study, and siRNA targeting Notch1 was used as a positive control in vivo. The results showed that upregulating Notch2 had the effect of suppressing cell growth and invasion as well as inducing apoptosis, just the same as the results of knocking down Notch1. Meanwhile, the activity of core signaling pathway–EGFR/PI3K/AKT in astrocytic glioma cells was repressed. Thus, the present study reveals, for the first time, that Notch1 and Notch2 play different roles in the biological processes of astrocytic gliomas. Knocking down the Notch1 or enforced overexpression of Notch2 both modulate the astrocytic glioma phenotype, and the mechanism by which Notch1 and 2 play different roles in the glioma growth should be further investigated.  相似文献   

2.
3.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   

4.
5.
6.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

7.
《Cellular signalling》2014,26(12):2773-2781
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca2 + and Mg2 + permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3  ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.  相似文献   

8.
Dysregulated epidermal growth factor receptor (EGFR) signaling through either genomic amplification or dominant-active mutation (EGFR(vIII)), in combination with the dual inactivation of INK4A/ARF and PTEN, is a leading cause of gliomagenesis. Our global expression analysis for microRNAs revealed that EGFR activation induces miR-146a expression, which is further potentiated by inactivation of PTEN. Unexpectedly, overexpression of miR-146a attenuates the proliferation, migration, and tumorigenic potential of Ink4a/Arf(-/-) Pten(-/-) Egfr(vIII) murine astrocytes. Its ectopic expression also inhibits the glioma development of a human glioblastoma cell line in an orthotopic xenograft model. Such an inhibitory function of miR-146a on gliomas is largely through downregulation of Notch1, which plays a key role in neural stem cell maintenance and is a direct target of miR-146a. Accordingly, miR-146a modulates neural stem cell proliferation and differentiation and reduces the formation and migration of glioma stem-like cells. Conversely, knockdown of miR-146a by microRNA sponge upregulates Notch1 and promotes tumorigenesis of malignant astrocytes. These findings indicate that, in response to oncogenic cues, miR-146a is induced as a negative-feedback mechanism to restrict tumor growth by repressing Notch1. Our results provide novel insights into the signaling pathways that link neural stem cells to gliomagenesis and may lead to new strategies for treating brain tumors.  相似文献   

9.
10.
Glioblastoma multiforme (GBM) is the most malignant and aggressive glioma with abnormal expression of genes that mediate glycolytic metabolism and tumor cell growth. Petunidin-3-O-glucoside (Pt3glc) is a kind of anthocyanin in the red grape and derived beverages, representing the most common naturally occurring anthocyanins with a reduced incidence of cancer and heart diseases. In this study, whether Pt3glc could effectively regulate glycolysis to inhibit GBM cell was investigated by using the DBTRG-05MG cell lines. Notably, Pt3glc displayed potent antiproliferative activity and significantly changed the protein levels related to both glycolytic metabolism and GBM cell survival. The expression of the proapoptotic protein Bcl-2-associated X protein was increased with concomitant reduction on the levels of the antiapoptotic protein B-cell lymphoma 2 and caspase-3 activity. Furthermore, the levels of survival signaling proteins, such as protein kinase B (Akt) and phospho-Akt (Scr473), extracellular signal-regulated kinase (ERK) and phospho-ERK, were significantly decreased by Pt3glc in combination with the phosphoinositide 3-kinase (PI3K) inhibitor of LY294002. Most importantly, the levels of Sirtuin 3 (SIRT3) and phosphorylated p53 were also downregulated, indicating that Pt3glc combinated with PI3K inhibitor could induce GBM cell death may act via the SIRT3/p53-mediated mitochondrial and PI3K/Akt-ERK pathways. Our findings thus provide rational evidence that the combination of Pt3glc with PI3K inhibitor, which target alternative pathways in GBM cells, may be a useful adjuvant therapy in glioblastoma treatment.  相似文献   

11.
Peripheral T cell homeostasis results from a balance between factors promoting survival and those that trigger deletion of Ag-reactive cells. The cytokine IL-2 promotes T cell survival whereas reactive oxygen species (ROS) sensitize T cells to apoptosis. Two pathways of activated T cell apoptosis-one triggered by Fas ligand and the other by cytokine deprivation-depend on ROS, with the latter also regulated by members of the Bcl-2 family. Notch family proteins regulate several cell-fate decisions in metazoans. Ectopic expression of the Notch1 intracellular domain (NICD) in T cells inhibits Fas-induced apoptosis. The underlying mechanism is not known and the role, if any, of Notch in regulating apoptosis triggered by cytokine deprivation or neglect has not been examined. In this study, we use a Notch1/Fc chimera; a blocking Ab to Notch1 and chemical inhibitors of gamma-secretase to investigate the role of Notch signaling in activated T cells of murine origin. We show that perturbing Notch signaling in activated CD4+/CD8+ T cells maintained in IL-2 results in the accumulation of ROS, reduced Akt/protein kinase B activity, and expression of the antiapoptotic protein Bcl-xL, culminating in apoptosis. A broad-spectrum redox scavenger inhibits apoptosis but T cells expressing mutant Fas ligand are sensitive to apoptosis. Activated T cells isolated on the basis of Notch expression (Notch+) are enriched for Bcl-xL expression and demonstrate reduced susceptibility to apoptosis triggered by neglect or oxidative stress. Furthermore, enforced expression of NICD protects activated T cells from apoptosis triggered by cytokine deprivation. Taken together, these data implicate Notch1 signaling in the cytokine-dependent survival of activated T cells.  相似文献   

12.
Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma.  相似文献   

13.
Microsatellite instability (MSI), which occurs in 15% of colorectal cancer, has been shown to have a lower incidence of metastasis and better patient survival rates compared with microsatellite stable colorectal cancer. However, a mechanistic understanding of the basis for this difference is very limited. Here, we show that restoration of TGFβ signaling by re-expression of TGFβ receptor II in MSI colon cancer cells increased PI3K/AKT activation, conferred resistance to growth factor deprivation stress-induced apoptosis, and promoted cell motility in vitro. Treatment with a potent PI3K inhibitor (LY294002) blocked the prosurvival and promotility effects of TGFβ, indicating that TGFβ-mediated promotion of cell survival and motility is dependent upon activation of the PI3K/AKT pathway. Analysis of apoptotic effectors that are affected by TGFβ signaling indicated that Bim is an effector of TGFβ-mediated survival. In addition, TGFβ-induced down-regulation of E-cadherin contributed to the prosurvival effect of TGFβ, and restoration of TGFβ signaling in MSI colon cancer cells increased liver metastasis in an orthotopic model in vivo. Taken together, our results demonstrate that restoration of TGFβ signaling promotes cell survival, motility, and metastatic progression in MSI colon cancer cells and indicate that TGFβ receptor II mutations contribute to the favorable outcomes in colon cancer patients with MSI.  相似文献   

14.

Background

Host malignant stromal cells induced by glioma stem/progenitor cells were revealed to be more radiation-resistant than the glioma stem/progenitor cells themselves after malignant transformation in nude mice. However, the mechanism underlying this phenomenon remains unclear.

Methods

Malignant stromal cells induced by glioma stem/progenitor cell 2 (GSC-induced host brain tumor cells, ihBTC2) were isolated and identified from the double color-coded orthotopic glioma nude mouse model. The survival fraction at 2 Gy (SF2) was used to evaluate the radiation resistance of ihBTC2, the human glioma stem/progenitor cell line SU3 and its radiation-resistant sub-strain SU3-5R and the rat C6 glioma cell line. The mRNA of Notch 1 and Hes1 from ihBTC2 cells were detected using qPCR before and after 4 Gy radiation. The expression of the Notch 1, pAkt and Bcl-2 proteins were investigated by Western blot. To confirm the role of the Notch pathway in the radiation resistance of ihBTC2, Notch signaling blocker gamma secretase inhibitors (GSIs) were used.

Results

The ihBTC2 cells had malignant phenotypes, such as infinite proliferation, hyperpentaploid karyotype, tumorigenesis in nude mice and expression of protein markers of oligodendroglia cells. The SF2 of ihBTC2 cells was significantly higher than that of any other cell line (P<0.05, n = 3). The expression of Notch 1 and Hes1 mRNAs from ihBTC2 cells was significantly increased after radiation. Moreover, the Notch 1, pAkt and Bcl-2 proteins were significantly increased after radiation (P<0.05, n = 3). Inhibition of Notch signaling markedly enhanced the radiosensitivity of ihBTC2 cells.

Conclusions

In an orthotopic glioma model, the malignant transformation of host stromal cells was induced by glioma stem/progenitor cells. IhBTC2 cells are more radiation-resistant than the glioma stem/progenitor cells, which may be mediated by activation of the Notch signaling pathway.  相似文献   

15.
Despite current advances in therapy, the prognosis of patients with glioblastoma has not improved sufficiently in recent decades. This is due mainly to the highly invasive capacity of glioma cells. Little is known about the mechanisms underlying this particular characteristic. While the Rho-kinase (ROCK)-dependent signaling pathways involved in glioma migration have yet to be determined, they show promise as one of the candidates in targeted glioblastoma therapy. There are two ROCK isoforms: ROCK1, which is upregulated in glioblastoma tissue compared to normal brain tissue, and ROCK2, which is also expressed in normal brain tissue. Blockage of both of these ROCK isoforms with pharmacologic inhibitors regulates the migration process. We examined the activities of ROCK1 and ROCK2 using knockdown cell lines and the newly developed stripe assay. Selective knockdown of either ROCK1 or ROCK2 exerted antidromic effects on glioma migration: while ROCK1 deletion altered the substrate-dependent migration, deletion of ROCK2 did not. Furthermore, ROCK1 knockdown reduced cell proliferation, whereas ROCK2 knockdown enhanced it. Along the signaling pathways, key regulators of the ROCK pathway are differentially affected by ROCK1 and ROCK2. These data suggest that the balanced activation of ROCKs is responsible for the substrate-specific migration and the proliferation of glioblastoma cells.  相似文献   

16.
17.
18.
19.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

20.
Hepatitis virus B (HBV) infection is one of the major causes of hepatocellular carcinomas (HCC). HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15) expressed higher Notch1 and Delta-like 4 (Dll4), compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号