首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

2.
To elucidate the influence of local motion of the polypeptide chain on the catalytic mechanism of an enzyme, we have measured (15)N relaxation data for Escherichia coli dihydrofolate reductase in three different complexes, representing different stages in the catalytic cycle of the enzyme. NMR relaxation data were analyzed by the model-free approach, corrected for rotational anisotropy, to provide insights into the backbone dynamics. There are significant differences in the backbone dynamics in the different complexes. Complexes in which the cofactor binding site is occluded by the Met20 loop display large amplitude motions on the picosecond/nanosecond time scale for residues in the Met20 loop, the adjacent betaF-betaG loop and for residues 67-69 in the adenosine binding loop. Formation of the closed Met20 loop conformation in the ternary complex with folate and NADP(+), results in attenuation of the motions in the Met20 loop and the betaF-betaG loop but leads to increased flexibility in the adenosine binding loop. New fluctuations on a microsecond/millisecond time scale are observed in the closed E:folate:NADP(+) complex in regions that form hydrogen bonds between the Met20 and the betaF-betaG loops. The data provide insights into the changes in backbone dynamics during the catalytic cycle and point to an important role of the Met20 and betaF-betaG loops in controlling access to the active site. The high flexibility of these loops in the occluded conformation is expected to promote tetrahydrofolate-assisted product release and facilitate binding of the nicotinamide ring to form the Michaelis complex. The backbone fluctuations in the Met20 loop become attenuated once it closes over the active site, thereby stabilizing the nicotinamide ring in a geometry conducive to hydride transfer. Finally, the relaxation data provide evidence for long-range motional coupling between the adenosine binding loop and distant regions of the protein.  相似文献   

3.
Although it has been known for many years that antibodies display properties characteristic of allosteric effectors, the molecular mechanisms responsible for these effects remain poorly understood. Here, we describe a single-domain antibody fragment (nanobody) that modulates protein function by constraining conformational change in the enzyme dihydrofolate reductase (DHFR). Nanobody 216 (Nb216) behaves as a potent allosteric inhibitor of DHFR, giving rise to mixed hyperbolic inhibition kinetics. The crystal structure of Nb216 in complex with DHFR reveals that the nanobody binds adjacent to the active site. Half of the epitope consists of residues from the flexible Met20 loop. This loop, which ordinarily oscillates between occluded and closed conformations during catalysis, assumes the occluded conformation in the Nb216-bound state. Using stopped flow, we show that Nb216 inhibits DHFR by stabilising the occluded Met20 loop conformation. Surprisingly, kinetic data indicate that the Met20 loop retains sufficient conformational flexibility in the Nb216-bound state to allow slow substrate turnover to occur.  相似文献   

4.
The structure and folding of dihydrofolate reductase (DHFR) from Escherichia coli and the mutant G121V-DHFR, in which glycine 121 in the exterior FG loop was replaced with valine, were studied by molecular dynamics simulations and CD and fluorescence spectroscopy. The importance of residue 121 for the chemical step during DHFR catalysis had been demonstrated previously. High-temperature MD simulations indicated that while DHFR and G121V-DHFR followed similar unfolding pathways, the strong contacts between the M20 loop and the FG loop in DHFR were less stable in the mutant. These contacts have been proposed to be involved in a coupled network of interactions that influence the protein dynamics and promote catalysis [Benkovic, S. J., and Hammes-Schiffer, S. (2003) Science 301, 1196-1202]. CD spectroscopy of DHFR and G121V-DHFR indicated that the two proteins existed in different conformations at room temperature. While the thermally induced unfolding of DHFR was highly cooperative with a midpoint at 51.6 +/- 0.7 degrees C, G121V-DHFR exhibited a gradual decrease in its level of secondary structure without a clear melting temperature. Temperature-induced unfolding and renaturation from the urea-denatured state revealed that both proteins folded via highly fluorescent intermediates. The formation of these intermediates occurred with relaxation times of 149 +/- 4.5 and 256 +/- 13 ms for DHFR and G121V-DHFR, respectively. The fluorescence intensity for the intermediates formed during refolding of G121V-DHFR was approximately twice that of the wild-type. While the fluorescence intensity then slowly decayed for DHFR toward a state representing the native protein, G121V-DHFR appeared to be trapped in a highly fluorescent state. These results suggest that the reduced catalytic activity of G121V-DHFR is the consequence of nonlocal structural effects that may result in a perturbation of the network of promoting motions.  相似文献   

5.
Dihydrofolate reductase (DHFR) has several flexible active site loops that facilitate ligand binding and catalysis. Previous studies of backbone dynamics in several complexes of DHFR indicate that the time scale and amplitude of motion depend on the conformation of the active site loops. In this study, information on dynamics is extended to methyl-containing side chains. To understand the role of side chain dynamics in ligand binding and loop conformation, methyl deuterium relaxation rates of Escherichia coli DHFR in binary folate and ternary folate:NADP+ complexes have been measured, together with chi(1) rotamer populations for threonine, isoleucine, and valine residues, determined from measurements of 3J(CgammaCO) and 3J(CgammaN) coupling constants. The results indicate that, in addition to backbone motional restriction in the adenosine-binding site, side chain flexibility in the active site and the surrounding active site loops is diminished upon binding NADP+. Resonances for several methyls in the active site and the surrounding active site loops were severely broadened in the folate:NADP+ ternary complex, suggesting the presence of motion on the chemical shift time scale. The side chains of Ile14 and Ile94, which pack against the nicotinamide and pterin rings of the cofactor and substrate, respectively, exhibit rotamer disorder in the ternary folate:NADP+ complex. Conformational fluctuations of these side chains may play a role in transition state stabilization; the observed line broadening for Ile14 suggests motions on a microsecond/millisecond time scale.  相似文献   

6.
Ensemble kinetics and single-molecule fluorescence microscopy were used to study conformational transitions associated with enzyme catalysis by dihydrofolate reductase (DHFR). The active site loop of DHFR was labeled with a fluorescence quencher, QSY35, at amino acid position 17, and the fluorescent probe, Alexa555, at amino acid 37, by introducing cysteines at these sites with site-specific mutagenesis. The distance between the probes was such that approximately 50% fluorescence resonance energy transfer (FRET) occurred. The double-labeled enzyme retained essentially full catalytic activity, and stopped-flow studies of both the forward and reverse reactions revealed that the distance between probes increased prior to hydride transfer. A fluctuation in fluorescence intensity of single molecules of DHFR was observed in an equilibrium mixture of substrates but not in their absence. Ensemble rate constants were derived from the distributions of lifetimes observed and attributed to a reversible conformational change. Studies were carried out with both NADPH and NADPD as substrates, with no measurable isotope effect. Similar studies with a G121V mutant DHFR resulted in smaller rate constants. This mutant DHFR has reduced catalytic activity, so that the collective data for the conformational change suggest that the conformational change being observed is associated with catalysis and probably represents a conformational change prior to hydride transfer. If the change in fluorescence is attributed to a change in FRET, the distance change associated with the conformational change is approximately 1-2 A. These results are correlated with other measurements related to conformation coupled catalysis.  相似文献   

7.
Thorpe IF  Brooks CL 《Proteins》2004,57(3):444-457
The energy barrier for hydride transfer in wild-type G121V and G121S variants of Escherichia coli dihydrofolate reductase (DHFR) fluctuates in a time-dependent manner. This fluctuation may be attributed to structural changes in the protein that modulate the site of chemistry. Despite being far from the active site, mutations at position 121 of DHFR reduce the hydride transfer rate of the enzyme. This occurrence has been suggested to arise from modifications to the conformational ensemble of the protein. We elucidate the effects of the G121S and G121V mutations on the hydride transfer barrier by identifying structural changes in the protein that correlate with lowered barriers. The effect of these structural parameters on the hydride transfer barrier may be rationalized by simple considerations of the geometric constraints of the hydride transfer reaction. Fluctuations of these properties are associated with specific backbone dihedral angles of residues within the Methione-20 (M20) loop. The dihedral angle preferences are mediated by interactions with the region of the enzyme in the vicinity of residue 121 and are translated into distinct ligand conformations. We predict mutations within the M20 loop that may alter the conformational space explored by DHFR. Such mutational changes are anticipated to adjust the hydride transfer efficacy of DHFR by modifying equilibrium distributions of hydride transfer barriers found in the enzyme.  相似文献   

8.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   

9.
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high‐energy conformation susceptible to proteolysis (cleavable form) using native‐state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m‐value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F‐G and Met‐20 loops on one face of the central β‐sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near‐native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F‐G and Met‐20 loops, which is coupled with compaction of the rest of the protein.  相似文献   

10.
Dihydrofolate reductase (DHFR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F). Because of the absence of any ionizable group in the vicinity of N5 of dihydrofolate it has been proposed that N5 could be protonated directly by a water molecule at the active site in the ternary complex of the Escherichia coli enzyme with cofactor and substrate. However, in the X-ray structures representing the Michaelis complex of the E. coli enzyme, a water molecule has never been observed in a position that could allow protonation of N5. In fact, the side chain of Met 20 blocks access to N5. Energy minimization reported here revealed that water could be placed in hydrogen bonding distance of N5 with only minor conformational changes. The r.m.s. deviation between the conformation of the M20 loop observed in the crystal structures of the ternary complexes and the conformation adopted after energy minimization was only 0.79 A. We performed molecular dynamics simulations to determine the accessibility by water of the active site of the Michaelis complex of DHFR. Water could access N5 relatively freely after an equilibration time of approximately 300 psec during which the side chain of Met 20 blocked water access. Protonation of N5 did not increase the accessibility by water. Surprisingly the number of near-attack conformations, in which the distance between the pro-R hydrogen of NADPH and C6 of dihydrofolate was less than 3.5 A and the angle between C4 and the pro-R hydrogen of NADPH and C6 of dihydrofolate was greater than 120 degrees, did not increase after protonation. However, when the hydride was transferred from NADPH to C6 of dihydrofolate before protonation, the side chain of Met 20 moved away from N5 after approximately 100 psec thereby providing water access. The average time during which water was found in hydrogen bonding distance to N5 was significantly increased. These results suggest that hydride transfer might occur early to midway through the reaction followed by protonation. Such a mechanism is supported by the very close contact between C4 of NADP+ and C6 of folate observed in the crystal structures of the ternary enzyme complexes, when the M20 loop is in its closed conformation.  相似文献   

11.
The hydride transfer reaction catalyzed by dihydrofolate reductase (DHFR) is a model for examining how protein dynamics contribute to enzymatic function. The relationship between functional motions and enzyme evolution has attracted significant attention. Recent studies on N23PP Escherichia coli DHFR (ecDHFR) mutant, designed to resemble parts of the human enzyme, indicated a reduced single turnover rate. NMR relaxation dispersion experiments with that enzyme showed rigidification of millisecond Met-20 loop motions (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234–238). A more recent study of this mutant, however, indicated that fast motions along the reaction coordinate are actually more dispersed than for wild-type ecDHFR (WT). Furthermore, a double mutant (N23PP/G51PEKN) that better mimics the human enzyme seems to restore both the single turnover rates and narrow distribution of fast dynamics (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159–11064). Here, we measured intrinsic kinetic isotope effects for both N23PP and N23PP/G51PEKN double mutant DHFRs over a temperature range. The findings indicate that although the C-H→C transfer and dynamics along the reaction coordinate are impaired in the altered N23PP mutant, both seem to be restored in the N23PP/G51PEKN double mutant. This indicates that the evolution of G51PEKN, although remote from the Met-20 loop, alleviated the loop rigidification that would have been caused by N23PP, enabling WT-like H-tunneling. The correlation between the calculated dynamics, the nature of C-H→C transfer, and a phylogenetic analysis of DHFR sequences are consistent with evolutionary preservation of the protein dynamics to enable H-tunneling from well reorganized active sites.  相似文献   

12.
Human dihydrofolate reductase-like 1 (DHFRL1) has been identified as a second human dihydrofolate reductase (DHFR) enzyme. Although DHFRL1 have high sequence homology with human DHFR, dihydrofolate (DHF) exhibits a lowered binding affinity to DHFRL1 and the corresponding molecular mechanism is still unknown. To address this question, we studied the binding of DHF to DHFRL1 and DHFR by using molecular dynamics simulation. Moreover, to investigate the role the 24th residue of DHFR/DHFRL1 plays in DHF binding, R24W DHFRL1 mutant was also studied. The van der Waals interaction are more crucial for the total DHF binding energies, while the difference between the DHF binding energies of human DHFR and DHFRL1 can be attributed to the electrostatic interaction and the polar desolvation free energy. More specifically, lower DHF affinity to DHFRL1 can be mainly attributed to the reduction of net electrostatic interactions of residues Arg32 and Gln35 of DHFRL1 with DHF as being affected by Arg24. The side chain of Arg24 in DHFRL1 can extend deeply into the binding sites of DHF and NADPH, and disturb the DHF binding by steric effect, which rarely happens in human DHFR and R24W DHFRL1 mutant. Additionally, the conformation of loop I in DHFRL1 was also studied in this work. Interestingly, the loop conformation resemble to normal closed state of Escherichia coli DHFR other than the closed state of human DHFR. We hope this work will be useful to understand the general characteristics of DHFRL1.  相似文献   

13.
Escherichia coli dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. During the catalytic cycle, DHFR undergoes conformational transitions between the closed (CS) and occluded (OS) states that, respectively, describe whether the active site is closed or occluded by the Met20 loop. The CS→OS and the reverse transition may be viewed as allosteric transitions. Using a sequence-based approach, we identify a network of residues that represents the allostery wiring diagram. Many of the residues in the allostery wiring diagram, which are dispersed throughout the adenosine-binding domain as well as the loop domain, are not conserved. Several of the residues in the network have been previously shown by NMR experiments, mutational studies, and molecular dynamics simulations to be linked to equilibration conformational fluctuations of DHFR. To further probe the nature of events that occur during conformational fluctuations, we use a self-organized polymer model to monitor the kinetics of the CS→OS and the reverse transitions. During the CS→OS transition, coordinated changes in a number of residues in the loop domain enable the Met20 loop to slide along the α-helix in the adenosine-binding domain. Sliding is triggered by pulling of the Met20 loop by the βG-βH loop and the pushing action of the βG-βH loop. The residues that facilitate the Met20 loop motion are part of the network of residues that transmit allosteric signals during the CS→OS transition. Replacement of M16 and G121, whose Cα atoms are about 4.3 Å in the CS, by a disulfide cross-link impedes that CS→OS transition. The order of events in the OS→CS transition is not the reverse of the forward transition. The contact Glu18-Ser49 in the OS persists until the sliding of the Met20 loop is nearly complete. The ensemble of structures in the transition state in both the allosteric transitions is heterogeneous. The most probable transition-state structure resembles the OS (CS) in the CS→OS (OS→CS) transition, which is in accord with the Hammond postulate. Structures resembling the OS (CS) are present as minor (∼ 1-3%) components in equilibrated CS (OS) structures.  相似文献   

14.
Boehr DD  Dyson HJ  Wright PE 《Biochemistry》2008,47(35):9227-9233
The catalytic cycle of an enzyme is frequently associated with conformational changes that may limit maximum catalytic throughput. In Escherichia coli dihydrofolate reductase, release of the tetrahydrofolate (THF) product is the rate-determining step under physiological conditions and is associated with an "occluded" to "closed" conformational change. In this study, we demonstrate that in dihydrofolate reductase the closed to occluded conformational change in the product ternary complex (E.THF.NADP (+)) also gates progression through the catalytic cycle. Using NMR relaxation dispersion, we have measured the temperature and pH dependence of microsecond to millisecond time scale backbone dynamics of the occluded E.THF.NADP (+) complex. Our studies indicate the presence of three independent dynamic regions, associated with the active-site loops, the cofactor binding cleft, and the C-terminus and an adjacent loop, which fluctuate into discrete conformational substates with different kinetic and thermodynamic parameters. The dynamics of the C-terminally associated region is pH-dependent (p K a < 6), but the dynamics of the active-site loops and cofactor binding cleft are pH-independent. The active-site loop dynamics access a closed conformation, and the accompanying closed to occluded rate constant is comparable to the maximum pH-independent hydride transfer rate constant. Together, these results strongly suggest that the closed to occluded conformational transition in the product ternary complex is a prerequisite for progression through the catalytic cycle and that the rate of this process places an effective limit on the maximum rate of the hydride transfer step.  相似文献   

15.
Kovrigin EL  Loria JP 《Biochemistry》2006,45(8):2636-2647
Conformational flexibility of the enzyme architecture is essential for biological function. These structural transitions often encompass significant portions of the enzyme molecule. Here, we present a detailed study of functionally relevant RNase A dynamics in the wild type and a D121A mutant form by NMR spin-relaxation techniques. In the wild-type enzyme, the dynamic properties are largely conserved in the apo, enzyme-substrate, and enzyme-product complexes. In comparison, mutation of aspartic acid 121 to alanine disrupts the timing of active-site dynamics, the product-release step, and global conformational changes, indicating that D121 plays a significant role in coordinating the dynamic events in RNase A. In addition, this mutation results in 90% loss of catalytic activity despite the absence of direct participation of D121 in the chemical reaction or in interactions with the substrate. These data suggest that one role of this conserved residue is to facilitate important millisecond protein dynamics.  相似文献   

16.
Henkels CH  Chang YC  Chamberlin SI  Oas TG 《Biochemistry》2007,46(51):15062-15075
Interconversion of protein conformations is imperative to function, as evidenced by conformational changes associated with enzyme catalytic cycles, ligand binding and post-translational modifications. In this study, we used 15N NMR relaxation experiments to probe the fast (i.e., ps-ns) and slow (i.e., micros-ms) conformational dynamics of Bacillus subtilis ribonuclease P protein (P protein) in its folded state, bound to two sulfate anions. Using the Lipari-Szabo mapping method [Andrec, M., Montelione, G. T., and Levy, R. M. (2000) J. Biomol. NMR 18, 83-100] to interpret the data, we find evidence for P protein dynamics on the mus-ms time scale in the ensemble. The residues that exhibit these slow internal motions are found in regions that have been previously identified as part of the P protein-P RNA interface. These results suggest that structural flexibility within the P protein ensemble may be important for proper RNase P holoenzyme assembly and/or catalysis.  相似文献   

17.
Substrate and inhibitor binding to dihydrofolate reductase (DHFR) primarily involves residues in the amino-terminal half of the enzyme; however, antibody binding studies performed in this laboratory suggested that the loop region located in the carboxyl terminus of human DHFR (hDHFR; residues 140-186) is involved in conformational changes that occur upon ligand binding and affect enzyme function (Ratnam, M., Tan, X., Prendergast, N.J., Smith, P.L. & Freisheim, J.H. (1988) Biochemistry 27, 4800-4804). To investigate this observation further, site-directed mutagenesis was used to construct deletion mutants of hDHFR missing 1 (del-1), 2 (del-2), 4 (del-4), and 6 (del-6) residues from loops in the carboxyl terminus of the enzyme. The del-1 mutant enzyme has a two-amino acid substitution in addition to the one-amino acid deletion. Deletion of only one amino acid resulted in a 35% decrease in the specific activity of the enzyme. The del-6 mutant enzyme was inactive. Surprisingly, the del-4 mutant enzyme retained a specific activity almost 33% that of the wild type. The specific activity of the del-2 mutant enzyme was slightly higher (38% wild-type activity) than that of the del-4 mutant. All three active deletion mutants were much less stable than the wild-type enzyme, and all three showed at least a 10-fold increase in Km values for both substrates. The del-1 and del-2 mutants exhibited a similar increase in KD values for both substrate and cofactor. The three active deletion mutants lost activity at concentrations of activating agents such as KCl, urea, and p-hydroxymercuribenzoate that continued to stimulate the wild-type enzyme. Antibody binding studies revealed conformational differences between the wild-type and mutant enzymes both in the absence and presence of bound folate. Thus, although the loops near the carboxyl terminus are far removed from the active site, small deletions of this region significantly affect DHFR function, indicating that the loop structure in mammalian DHFR plays an important functional role in its conformation and catalysis.  相似文献   

18.
CstII, a bifunctional (α2,3/8) sialyltransferase from Campylobacter jejuni, is a homotetramer. It has been reported that mutation of the interface residues Phe121 (F121D) or Tyr125 (Y125Q) leads to monomerization and partial loss of enzyme activity, without any change in the secondary or tertiary structures. MD simulations of both tetramer and monomer, with and without bound donor substrate, were performed for the two mutants and WT to understand the reasons for partial loss of activity due to monomerization since the active site is located within each monomer. RMSF values were found to correlate with the crystallographic B-factor values indicating that the simulations are able to capture the flexibility of the molecule effectively. There were no gross changes in either the secondary or tertiary structure of the proteins during MD simulations. However, interface is destabilized by the mutations, and more importantly the flexibility of the lid region (Gly152-Lys190) is affected. The lid region accesses three major conformations named as open, intermediate, and closed conformations. In both Y121Q and F121D mutants, the closed conformation is accessed predominantly. In this conformation, the catalytic base His188 is also displaced. Normal mode analysis also revealed differences in the lid movement in tetramer and monomer. This provides a possible explanation for the partial loss of enzyme activity in both interface mutants. The lid region controls the traffic of substrates and products in and out of the active site, and the dynamics of this region is regulated by tetramerization. Thus, this study provides valuable insights into the role of loop dynamics in enzyme activity of CstII.  相似文献   

19.
Bacterial acyl carrier protein (ACP) is a highly anionic, 9 kDa protein that functions as a cofactor protein in fatty acid biosynthesis. Escherichia coli ACP is folded at neutral pH and in the absence of divalent cations, while Vibrio harveyi ACP, which is very similar at 86% sequence identity, is unfolded under the same conditions. V. harveyi ACP adopts a folded conformation upon the addition of divalent cations such as Ca2+ and Mg2+ and a mutant, A75H, was previously identified that restores the folded conformation at pH 7 in the absence of divalent cations. In this study we sought to understand the unique folding behavior of V. harveyi ACP using NMR spectroscopy and biophysical methods. The NMR solution structure of V. harveyi ACP A75H displays the canonical ACP structure with four helices surrounding a hydrophobic core, with a narrow pocket closed off from the solvent to house the acyl chain. His-75, which is charged at neutral pH, participates in a stacking interaction with Tyr-71 in the far C-terminal end of helix IV. pH titrations and the electrostatic profile of ACP suggest that V. harveyi ACP is destabilized by anionic charge repulsion around helix II that can be partially neutralized by His-75 and is further reduced by divalent cation binding. This is supported by differential scanning calorimetry data which indicate that calcium binding further increases the melting temperature of V. harveyi ACP A75H by ∼20 °C. Divalent cation binding does not alter ACP dynamics on the ps-ns timescale as determined by 15N NMR relaxation experiments, however, it clearly stabilizes the protein fold as observed by hydrogen-deuterium exchange studies. Finally, we demonstrate that the E. coli ACP H75A mutant is similarly unfolded as wild-type V. harveyi ACP, further stressing the importance of this particular residue for proper protein folding.  相似文献   

20.
The adiabatic compressibility (beta s) was determined, by means of the precise sound velocity and density measurements, for a series of single amino acid substituted mutant enzymes of Escherichia coli dihydrofolate reductase (DHFR) and aspartate aminotransferase (AspAT). Interestingly, the beta s values of both DHFR and AspAT were influenced markedly by the mutations at glycine-121 and valine-39, respectively, in which the magnitude of the change was proportional to the enzyme activity. This result demonstrates that the local change of the primary structure plays an important role in atomic packing and protein dynamics, which leads to the modified stability and enzymatic function. This is the first report on the compressibility of mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号