首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012–2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.  相似文献   

2.
Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.  相似文献   

3.
Several studies have demonstrated a latitudinal gradient in the proportion of omnivorous fish species (that is, consumers of both vegetal and animal material) in marine ecosystems. To establish if this global macroecological pattern also exists in fresh and brackish waters, we compared the relative richness of omnivorous fish in freshwater, estuarine, and marine ecosystems at contrasting latitudes. Furthermore, we sought to determine the main environmental correlates of change in fish omnivory. We conducted a meta-analysis of published data focusing on change in the relative richness of omnivorous fishes in native fish communities along a broad global latitudinal gradient, ranging from 41°S to 81.5 N° including all continents except for Antarctica. Data from streams, rivers, lakes, reservoirs, estuaries, and open marine waters (ca. 90 papers covering 269 systems) were analyzed. Additionally, the relationship between the observed richness in omnivory and key factors influencing trophic structure were explored. For all ecosystems, we found a consistent increasing trend in the relative richness of omnivores with decreasing latitude. Furthermore, omnivore richness was higher in freshwaters than in marine ecosystems. Our results suggest that the observed latitudinal gradient in fish omnivory is a global ecological pattern occurring in both freshwater and marine ecosystems. We hypothesize that this macroecological pattern in fish trophic structure is, in part, explained by the higher total fish diversity at lower latitudes and by the effect of temperature on individual food intake rates; both factors ultimately increasing animal food limitation as the systems get warmer.  相似文献   

4.
Freshwater lakes and ponds present an ecological interface between humans and a variety of host organisms. They are a habitat for the larval stage of many insects and may serve as a medium for intraspecies and interspecies transmission of viruses such as avian influenza A virus. Furthermore, freshwater bodies are already known repositories for disease-causing viruses such as Norwalk Virus, Coxsackievirus, Echovirus, and Adenovirus. While RNA virus populations have been studied in marine environments, to this date there has been very limited analysis of the viral community in freshwater. Here we present a survey of RNA viruses in Lake Needwood, a freshwater lake in Maryland, USA. Our results indicate that just as in studies of other aquatic environments, the majority of nucleic acid sequences recovered did not show any significant similarity to known sequences. The remaining sequences are mainly from viral types with significant similarity to approximately 30 viral families. We speculate that these novel viruses may infect a variety of hosts including plants, insects, fish, domestic animals and humans. Among these viruses we have discovered a previously unknown dsRNA virus closely related to Banna Virus which is responsible for a febrile illness and is endemic to Southeast Asia. Moreover we found multiple viral sequences distantly related to Israeli Acute Paralysis virus which has been implicated in honeybee colony collapse disorder. Our data suggests that due to their direct contact with humans, domestic and wild animals, freshwater ecosystems might serve as repositories of a wide range of viruses (both pathogenic and non-pathogenic) and possibly be involved in the spread of emerging and pandemic diseases.  相似文献   

5.
Aquatic viruses include infected viruses in aquatic animals, plants and microorganisms, and free-floating viruses(virioplankton)in water environments. In the last three decades, a huge number of aquatic viruses, especially diverse free-floating viruses,including cyanophages, phycoviruses, archaea viruses, giant viruses, and even virophages, have been identified by virological experiments and metagenomic analyses. Based on a comprehensive introduction of aquatic virus classification and their morphological and genetic diversity, here, we summarize and outline main virus species, their evolutionary contribution to aquatic communities through horizontal gene transfer, and their ecological roles for cyanobacterial bloom termination and global biogeochemical cycling in freshwater and marine ecosystems. Thereby, some novel insights of aquatic viruses and virus-host interactions, especially their evolutionary contribution and ecological rolesin diverse aquatic communities and ecosystems, are highlighted in this review.  相似文献   

6.
The occurrence of picocyanobacteria, the smallest cell-size fraction of cyanobacteria, in low-pH waters, is still poorly studied. In this study, we tested the hypothesis that picocyanobacteria found occasionally in low-pH environments are adapted to such water conditions. We isolated picocyanobacteria by means of the cytometric method from two humic lakes with pH ≤5. We obtained two strains belonging to two cosmopolitan phylogenetic clades of picocyanobacteria: Cyanobium gracile cluster and Subalpine cluster I. Experiments on filtered lake water from low-pH (≤5) and slightly alkaline (pH 8.2) lakes, and with an acidified cyanobacterium medium (pH 4.5) were conducted to test the growth of the isolated picocyanobacteria in various pH conditions. The experimental results of this study showed that some picocyanobacteria strains were acid tolerant, achieving higher growth rates and reaching higher maximum numbers in humic, naturally acidic waters rather than in alkaline waters. We show that despite a close phylogenetic relationship, strains of picocyanobacteria exhibit significant physiological and ecological diversity and that at least some picocyanobacteria have the evolutionary potential to cope with low pH. Characterization of the genetic basis of acid tolerance in picocyanobacteria is important to understand how these microorganisms function in aquatic ecosystems and how their communities may respond to a changing environment.  相似文献   

7.
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.  相似文献   

8.
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.  相似文献   

9.
Double-stranded DNA viruses infecting eukaryotic algae (e.g., phycodnaviruses) and cyanobacteria (e.g., cyanophages) are now recognized as widespread and ubiquitous in aquatic environments. However, both the diversity and functional roles of these viruses in fresh waters are still poorly understood. We conducted a year-long study in 2011 of the community structure of planktonic virus groups in the upper lit layer of two important freshwater natural ecosystems in France, Lake Annecy (oligotrophic) and Lake Bourget (oligo-mesotrophic). Using PCR-DGGE to target a number of different structural and functional signature genes, i.e.,g20, g23, psbA, polB, and mcp, the phytoplankton viruses were shown to display temporal and spatial variability. There were marked seasonal changes in community structure for all viral groups in Lake Bourget, but only for T4-like myoviruses and psbA-containing cyanophages in Lake Annecy. The multivariate statistical analyses revealed that (1) various environmental factors can directly or indirectly explain the community structure observed for each phytoplankton viral group, and (2) temporal patterns of T4-like myovirus community structure were similar between the two lakes. In general, our results (1) suggest that the observed algal virus patterns were associated with significant shifts in phytoplankton biomass and/or structure, which in turn were shaped by the abiotic environment, and (2) support the Bank model proposed by Breitbart and Rohwer (Trends Microbiol 13:278–284, 2005). This study provides new evidence that freshwater lakes contain a significant diversity of algal viruses, and that the distribution of these viruses strongly mirrors that of their hosts.  相似文献   

10.
Cyanophages are important components of aquatic ecosystems, but their genetic diversity has been little investigated in freshwaters. A yearlong survey was conducted in surface waters of the two largest natural perialpine lakes in France (Lake Annecy and Lake Bourget) to investigate part of this cyanophage diversity through the analysis of both structural (e.g., g20) and functional (e.g., psbA) genes. We found that these cyanophage signature genes were prevalent throughout the year but that the community compositions of g20 cyanomyoviruses were significantly different between the two lakes. In contrast, psbA-containing cyanophages seemed to be more similar between the two ecosystems. We also found that a large proportion of g20 sequences grouped with cyanomyophage isolates. psbA sequences, belonging to phages of Synechococcus spp., were characterized by distinct triplet motifs (with a novel viral triplet motif, EFE). Thus, our results show that cyanophages (i) are a diverse viral community in alpine lakes and (ii) are clearly distinct from some other freshwater and marine environments, suggesting the influence of unique biogeographic factors.  相似文献   

11.
Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.  相似文献   

12.
Little is known about Phycodnavirus (or double‐stranded DNA algal virus) diversity in aquatic ecosystems, and virtually, no information has been provided for European lakes. We therefore conducted a 1‐year survey of the surface waters of France's two largest lakes, Annecy and Bourget, which are characterized by different trophic states and phytoplanktonic communities. We found complementary and contrasting diversity of phycodnavirus in the lakes based on two genetic markers, the B family DNA polymerase‐encoding gene (polB) and the major capsid protein‐encoding gene (mcp). These two core genes have already been used, albeit separately, to infer phylogenetic relationships and genetic diversity among members of the phycodnavirus family and to determine the occurrence and diversity of these genes in natural viral communities. While polB yielded prasinovirus‐like sequences, the mcp primers yielded sequences for prasinoviruses, chloroviruses, prymnesioviruses and other groups not known from available databases. There was no significant difference in phycodnavirus populations between the two lakes when the sequences were pooled over the full year of investigation. By comparing Lakes Annecy and Bourget with data for other aquatic environments around the world, we show that these alpine lakes are clearly distinct from both other freshwater ecosystems (lakes and rivers) and marine environments, suggesting the influence of unique biogeographic factors.  相似文献   

13.
Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton.  相似文献   

14.
The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.  相似文献   

15.
To gain a better understanding of the interactions among bacteria, viruses and flagellates in coastal marine ecosystems, we investigated the effect of viral lysis and protistan bacterivory on bacterial abundance, production and diversity [determined by 16S rRNA gene polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE)] in three coastal marine sites with different nutrient supplies in Hong Kong. Six experiments were set up using filtration and dilution methods to develop virus, flagellate and virus+flagellate treatments for natural bacterial populations. All three predation treatments had significant repressing effects on bacterial abundance. Bacterial production was significantly repressed by flagellates and both predators (flagellates and viruses). Bacterial apparent species richness (indicated as the number of DGGE bands) was always significantly higher in the presence of viruses, flagellates and both predators than in the predator-free control. Cluster analysis of the DGGE patterns showed that the effects of viruses and flagellates on bacterial community structure were relatively stochastic while the co-effects of predators caused consistent trends (DGGE always showed the most similar patterns when compared with those of in situ environments) and substantially increased the apparent richness. Overall, we found strong evidence that viral lysis and protist bacterivory act additively to reduce bacterial production and to sustain diversity. This first systematic attempt to study the interactive effects of viruses and flagellates on the diversity and production of bacterial communities in coastal waters suggests that a tight control of bacterioplankton dominants results in relatively stable bacterioplankton communities.  相似文献   

16.
Here a virus, there a virus, everywhere the same virus?   总被引:22,自引:0,他引:22  
There are an estimated 10(31) viruses on Earth, most of which are phages that infect bacteria. Metagenomic analyses have shown that environmental viral communities are incredibly diverse. There are an estimated 5000 viral genotypes in 200 liters of seawater and possibly a million different viral genotypes in one kilogram of marine sediment. By contrast, some culturing and molecular studies have found that viruses move between different biomes. Together, these findings suggest that viral diversity could be high on a local scale but relatively limited globally. Also, by moving between environments, viruses can facilitate horizontal gene transfer.  相似文献   

17.
Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h(-1)) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during hydrological events and then decay once there.  相似文献   

18.
The presence of aerobic anoxygenic phototrophs (AAPs) has been repeatedly reported from various marine environments, but their distribution in freshwater lakes was neglected until recently. We investigated the phylogenetic composition of AAP communities in 10 lakes in Northeastern Germany with different trophic status including oligotrophic Lake Stechlin and humic matter rich Lake Grosse Fuchskuhle. The AAP community was composed by members of Alpha- and Betaproteobacteria, but their contribution varied largely among the studied lakes. Our results show that AAP community composition in the studied lakes was affected mostly by pH and humic matter content. While alkaline lakes were mostly composed of Betaproteobacteria, the acidic and humic matter rich south-west (SW) basin of Lake Grosse Fuchskule was dominated (87%) by Alphaproteobacteria. The most frequent group within Betaproteobacteria was a cluster of pufM genes which was phylogenetically related to Rhodoferax representing 38.5% of all retrieved sequences. Alphaproteobacteria-related sequences had a broader phylogenetic diversity including six different taxa dominated by Sphingomonas- and Rhodobacter-like bacteria in lakes with alkaline to neutral pH. In the acidic and humic matter-rich SW basin of Lake Grosse Fuchskuhle, however, Methylobacterium-related sequences dominated the AAP community. We suggest that the variable AAP community structure might reflect the potential of these bacteria to cope with the contrasting conditions in freshwater environments.  相似文献   

19.
Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral‐to‐microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non‐redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non‐redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core.  相似文献   

20.
Studies of marine viromes (viral metagenomes) have revealed that DNA viruses are highly diverse and exhibit biogeographic patterns. However, little is known about the diversity of RNA viruses, which are mostly composed of eukaryotic viruses, and their biogeographic patterns in the oceans. A growth in global commerce and maritime traffic may accelerate spread of diverse and non-cosmopolitan DNA viruses and potentially RNA viruses from one part of the world to another. Here, we demonstrated through metagenomic analyses that failure to comply with mid-ocean ballast water exchange regulation could result in movement of viromes including both DNA viruses and RNA viruses (including potential viral pathogens) unique to geographic and environmental niches. Furthermore, our results showed that virus richness (known and unknown viruses) in ballast water is associated with distance between ballast water exchange location and its nearest shoreline as well as length of water storage time in ballast tanks (voyage duration). However, richness of only known viruses is governed by local environmental conditions and different viral groups have different responses to environmental variation. Overall, these results identified ballast water as a factor contributing to ocean virome transport and potentially increased exposure of the aquatic bioshpere to viral invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号