首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of plants are unable to evade unfavorable conditions such as flooding, salinity, or drought. Therefore, a fine-tuned water homeostasis appears to be of crucial importance for plant survival, and it was assumed that aquaporins play a significant role in these processes. Regulation of plant aquaporin conductivity was suggested to be achieved by a gating mechanism that involves protein phosphorylation under drought stress conditions and protonation after cytosolic acidification during flooding. The effect of protein phosphorylation or protonation of aquaporins was studied on two plasma membrane intrinsic proteins, NtPIP2;1 and NtAQP1 from tobacco, which were heterologously expressed in yeast. Our results on mutated aquaporins with serine-to-alanine exchange indicate that phosphorylation of the two key serine residues did not affect the pH-dependent modification of water permeability. Protonation on a conserved histidine residue decreased water conductivity of NtPIP2;1. Although cells expressing NtPIP2;1 with a replacement of the histidine by an alanine were found to be pH-insensitive with regard to water permeability, these maintain high water transport rates, similar to those obtained under acidic conditions. The data clearly support the role of histidine at 196 as a component of pH-dependent modification of aquaporin-facilitated water transport. The predictions of combined effects from phosphorylation at conserved serines and histidine protonation were not supported by the results of functional analysis. The obtained results challenge the gating model as a general regulation mechanism for plant plasma membrane aquaporins.  相似文献   

2.
During maturation, Vitis vinifera berries accumulate a large amount of several anthocyanins in the epidermal tissue, whereas their precursors and intermediates are ubiquitously synthesized within the fruit. Up to date, several mechanisms of flavonoid transport at subcellular level have been hypothesized, but it is not possible to identify a general model applicable in every plant tissue and organ. Recently, a putative anthocyanin carrier, homologue to mammalian bilitranslocase (BTL) (TC 2.A.65.1.1), was found in Dianthus caryophyllus petal microsomes. In the present paper, an immunohistochemical and immunochemical analysis, using an antibody raised against a BTL epitope, evidences the expression and function of such a transporter in V. vinifera berries (cv. Merlot). Specific localisations of the putative carrier within berry tissues together with expression changes during different developmental stages are shown. Water stress induces an increase in protein expression in both skin and pulp samples. A bromosulfalein (BSP) uptake activity, inhibitable by the BTL antibody, is detected in berry mesocarp microsomes, with K (m) = 2.39 microM BSP and V (max) = 0.29 micromol BSP min(-1) mg(-1) protein. This BSP uptake is also competitively inhibited by quercetin (K (i) = 4 microM). A putative role for this carrier is discussed in relation to the membrane transport of secondary metabolites.  相似文献   

3.
4.
Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa), AQP-like protein (279aa), AQP1 (314aa) and AQP-like protein (596aa). We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis for the first time shows the presence of subcellular aquaporins and provides structural and functional characterization of aquaporins in Leishmania donovani.  相似文献   

5.
Aquaporin Tetramer Composition Modifies the Function of Tobacco Aquaporins   总被引:1,自引:0,他引:1  
Heterologous expression in yeast cells revealed that NtAQP1, a member of the so-called PIP1 aquaporin subfamily, did not display increased water transport activity in comparison with controls. Instead, an increased CO2-triggered intracellular acidification was observed. NtPIP2;1, which belongs to the PIP2 subfamily of plant aquaporins, behaved as a true aquaporin but lacked a CO2-related function. Results from split YFP experiments, protein chromatography, and gel electrophoresis indicated that the proteins form heterotetramers when coexpressed in yeast. Tetramer composition had effects on transport activity as demonstrated by analysis of artificial heterotetramers with a defined proportion of NtAQP1 to NtPIP2;1. A single NtPIP2;1 aquaporin in a tetramer was sufficient to significantly increase the water permeability of the respective yeast cells. With regard to CO2-triggered intracellular acidification, a cooperative effect was observed, where maximum rates were measured when the tetramer consisted of NtAQP1 aquaporins only. The results confirm the model of an aquaporin monomer as a functional unit for water transport and suggest that, for CO2-related transport processes, a structure built up by the tetramer is the basis of this function.  相似文献   

6.
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24–38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.  相似文献   

7.
Potassium accumulation is essential for grapevine (Vitis vinifera L.) growth and development, but excessive levels in berries at harvest may reduce wine quality particularly for red wines. In addition to decreasing the free acid levels, potassium also combines with tartaric acid to form largely insoluble potassium bitartrate. This precipitates during winemaking and storage, resulting in an increase in wine pH that is associated with negative impacts on wine colour, flavour, and microbiological stability. For these reasons, a better understanding of potassium transport and accumulation within the vine and berries is important for producing fruit with improved winemaking characteristics. Here two genes encoding KUP/KT/HAK-type potassium transporters that are expressed in grape berries are described. Their function as potassium transporters was demonstrated by complementation of an Escherichia coli mutant. The two transporters are expressed most highly in the berry skin during the first phase of berry development (pre-veraison), with similar patterns in two grapevine varieties. The timing and location of expression of these transporters are consistent with an involvement in potassium accumulation in grape berries.  相似文献   

8.
Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite.  相似文献   

9.
探究MybA类基因在不同类型葡萄品种中的分布,可为葡萄品种鉴定,以及有色葡萄育种的亲本选择提供依据。本研究以欧亚种、欧美杂种、法美杂种、山欧杂种以及美洲种在内的118个葡萄初级核心种质为材料,对其MybA基因型进行分析。结果表明:欧亚种及其杂种普遍具有VvmybA1基因的等位基因VvmybA1a,仅10个欧亚种及其杂种品种中没有检测到VvmybA1a基因;欧亚种、欧美杂种以及法美杂种中普遍同时具有VvmybA1、VvmybA2和VvmybA3基因,仅少数品种未检测到VvmybA2或VvmybA3基因;山欧杂种中北玫、公酿1号和熊岳白葡萄同时具有VvmybA1、VvmybA2和VvmybA3基因,北醇和北红中仅检测到VvmybA1和VvmybA3基因;仅在具有美洲种血缘的葡萄品种中检测到VlmybA2基因,而5个认为是美洲种的品种未检测到VlmybA2基因,且检测到了欧亚种特有的VvmybA1a等位基因,推测它们为含美洲种血缘较多的欧美杂种,而非纯美洲种。  相似文献   

10.
11.
Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.  相似文献   

12.
Water homeostasis is crucial to the growth and survival of plants under water-related stress. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. Here we report the water transport activity and mechanisms for the regulation of barley (Hordeum vulgare) PIP aquaporins. HvPIP2 but not HvPIP1 channels were found to show robust water transport activity when expressed alone in Xenopus laevis oocytes. However, the co-expression of HvPIP1 with HvPIP2 in oocytes resulted in significant increases in activity compared with the expression of HvPIP2 alone, suggesting the participation of HvPIP1 in water transport together with HvPIP2 presumably through heteromerization. Severe salinity stress (200 mM NaCl) significantly reduced root hydraulic conductivity (Lp(r)) and the accumulation of six of 10 HvPIP mRNAs. However, under relatively mild stress (100 mM NaCl), only a moderate reduction in Lp(r) with no significant difference in HvPIP mRNA levels was observed. Sorbitol-mediated osmotic stress equivalent to 100 and 200 mM NaCl induced nearly identical Lp(r) reductions in barley roots. Furthermore, the water transport activity in intact barley roots was suggested to require phosphorylation that is sensitive to a kinase inhibitor, staurosporine. HvPIP2s also showed water efflux activity in Xenopus oocytes, suggesting a potential ability to mediate water loss from cells under hypertonic conditions. Water transport via HvPIP aquaporins and the significance of reductions of Lp(r) in barley plants during salinity stress are discussed.  相似文献   

13.
The establishment of the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in North America has resulted in negative impacts on fruit production. We investigated the overwintering survival of H. axyridis after feeding on four diets: injured wine grape berries, 25% sucrose solution, water, and a control containing no food or water. After being exposed to these diets for 6 days, live individuals were transferred to clean plastic Petri dishes, and held at 5 ± 1 °C in growth chambers throughout the winter. Survival was recorded every month. Adult lady beetles collected during the overwintering flight in mid-October had higher survival rates than beetles collected from soybean fields in mid-August. These results suggest that an adaptation period prior to diapause increases the chances of lady beetle survival over the winter. In addition, injured wine grape berries, sugar, and water decreased beetle mortality during the overwintering months. Our results also showed that under similar conditions, females have higher survival during the winter than males. The importance of sugar and water on winter survival may drive H. axyridis adults to vineyards for feeding on wine grapes. Finally, we tested if adults of H. axyridis and the European paper wasp, Polistes dominulus Christ (Hymenoptera: Vespidae), were able to break the grape skin. Harmonia axyridis adults and paper wasps were not able to cause the primary injury to berries of Frontenac grapes under laboratory conditions. These results suggest that control of paper wasps in vineyards may not affect H. axyridis aggregations, and that H. axyridis feeding on wine grapes depends on previous injury to grape berries.  相似文献   

14.
The stilbene resveratrol is a stress metabolite produced by Vitis vinifera grapevines during fungal infection, wounding or UV radiation. Resveratrol is synthesised particularly in the skins of grape berries and only trace amounts are present in the fruit flesh. Red wine contains a much higher resveratrol concentration than white wine, due to skin contact during fermentation. Apart from its antifungal characteristics, resveratrol has also been shown to have cancer chemopreventive activity and to reduce the risk of coronary heart disease. It acts as an antioxidant and anti-mutagen and has the ability to induce specific enzymes that metabolise carcinogenic substances. The objective of this pilot study was to investigate the feasibility of developing wine yeasts with the ability to produce resveratrol during fermentation in both red and white wines, thereby increasing the wholesomeness of the product. To achieve this goal, the phenylpropanoid pathway in Saccharomyces cerevisiae would have to be introduced to produce p-coumaroyl-CoA, one of the substrates required for resveratrol synthesis. The other substrate for resveratrol synthase, malonyl-CoA, is already found in yeast and is involved in de novo fatty-acid biosynthesis. We hypothesised that production of p-coumaroyl-CoA and resveratrol can be achieved by co-expressing the coenzyme-A ligase-encoding gene (4CL216) from a hybrid poplar and the grapevine resveratrol synthase gene (vst1) in laboratory strains of S. cerevisiae. This yeast has the ability to metabolise p-coumaric acid, a substance already present in grape must. This compound was therefore added to the synthetic media used for the growth of laboratory cultures. Transformants expressing both the 4CL216 and vst1 genes were obtained and tested for production of resveratrol. Following beta-glucosidase treatment of organic extracts for removal of glucose moieties that are typically bound to resveratrol, the results showed that the yeast transformants had produced the resveratrol beta-glucoside, piceid. This is the first report of the reconstruction of a biochemical pathway in a heterologous host to produce resveratrol.  相似文献   

15.
16.
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins.  相似文献   

17.
18.
Plants contain a number of aquaporin isoforms. We developed a method for determining the water channel activity of individual isoforms of aquaporin. Six plasma membrane aquaporins (RsPIPs) and two vacuolar membrane aquaporins (RsTIPs) of radish (Raphanus sativus) were expressed heterologously in Saccharomyces cerevisiae BJ5458, which is deficient in endogenous functional aquaporin. Aquaporins were detected by immunoblot analysis with corresponding antibodies. Water permeability of membranes from yeast transformants was assayed by stopped-flow spectrophotometry. The water channel activity of members of the RsPIP2 and RsTIP subfamilies was about 10 times and 5 times greater, respectively, than that of the control; however, RsPIP1s had little (RsPIP1-2 and RsPIP1-3) or no activity (RsPIP1-1). Site-directed mutation of several residues conserved in RsPIP1s or RsPIP2s markedly altered the water transport activity. Exchange of Ile244 of RsPIP1-3 with valine increased the activity to 250% of the wild type RsPIP1-3. On the other hand, exchange of Val235 of RsPIP2-2, which corresponds to RsPIP1-3 Ile244, with isoleucine caused a marked inactivation to 45% of the original RsPIP2-2. Mutation at possible phosphorylation sites at the N- and C-terminal tails also altered the activity. These results suggest that these residues in the half-helix loop E and the tails are involved in the water transport and the functional regulation of RsPIP1 and RsPIP2.  相似文献   

19.
美国酿酒葡萄品种在北京地区的生长和适应性表现   总被引:1,自引:0,他引:1  
调查研究了首次引进的13个美国酿酒葡萄品种在北京地区栽培后的植物学性状、果实品质和抗寒及抗霜霉病能力,并与传统的欧亚种酿酒葡萄及砧木品种进行了比较与分析,总结了它们之间的植物学性状与抗逆性的差异。本试验选出了在抗寒及抗霜霉病方面表现优良的美国酿酒葡萄品种,为这些品种在我国的实际栽培推广提供科学依据。  相似文献   

20.
The Saccharomyces cerevisiae strain Sigma1278b possesses two putative aquaporins, Aqy1-1p and Aqy2-1p. Previous work demonstrated that Aqy1-1p functions as a water channel in Xenopus oocyte. However, no function could be attributed to Aqy2-1p in this system. Specific antibodies were used to follow the expression of Aqy1-1p and Aqy2-1p in the yeast. Aqy1-1p was never detected whatever the growth phase and culture conditions tested. In contrast, Aqy2-1p was detected only during the exponential growth phase in rich medium containing glucose. Aqy2-1p expression was repressed by hyper-osmotic culture conditions. Both immunocytochemistry and biochemical subcellular fractionation demonstrated that Aqy2-1p is located on the endoplasmic reticulum (ER) as well as on the plasma membrane. In microsomal vesicles enriched in ER, a water channel activity due to Aqy2-1p was detected by stopped-flow analysis. Our results show that the expression of aquaporins is tightly controlled. The physiological relevance of aquaporin-mediated water transport in yeast is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号