首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tobacco α-helical protein Nt-4/1 with unknown function forms ribonucleoprotein (RNP) complexes in vitro. Results obtained by retardation of RNP complexes in agarose gel were confirmed by Western-Northern hybridization. Several deletion and point mutants of Nt-4/1 were constructed, and the RNA-binding site was mapped in a positively charged region of the C-terminal domain of the protein. The results of this study and those described earlier support our hypothesis of the participation of Nt-4/1 protein in spreading RNA-containing pathogens in the plant.  相似文献   

2.
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants.  相似文献   

3.
The translocating chain-associating membrane protein (TRAM) is a glycoprotein involved in the translocation of secreted proteins into the endoplasmic reticulum (ER) lumen and in the insertion of integral membrane proteins into the lipid bilayer. As a major step toward elucidating the structure of the functional ER translocation/insertion machinery, we have characterized the membrane integration mechanism and the transmembrane topology of TRAM using two approaches: photocross-linking and truncated C-terminal reporter tag fusions. Our data indicate that TRAM is recognized by the signal recognition particle and translocon components, and suggest a membrane topology with eight transmembrane segments, including several poorly hydrophobic segments. Furthermore, we studied the membrane insertion capacity of these poorly hydrophobic segments into the ER membrane by themselves. Finally, we confirmed the main features of the proposed membrane topology in mammalian cells expressing full-length TRAM.  相似文献   

4.
5.
The Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene encodes an integral membrane protein, called seipin, of unknown function localized to the endoplasmic reticulum of eukaryotic cells. Seipin is associated with the heterogeneous genetic disease BSCL2, and mutations in an N-glycosylation motif links the protein to two other disorders, autosomal-dominant distal hereditary motor neuropathy type V and Silver syndrome. Here, we report a topological study of seipin using an in vitro topology mapping assay. Our results suggest that the predominant form of seipin is 462 residues long and has an N(cyt)-C(cyt) orientation with a long luminal loop between the two transmembrane helices.  相似文献   

6.
The glycosylation state of the glycosyl-phosphatidylinositol (GPI) anchored cellular prion protein (PrPC) can influence the formation of the disease form of the protein responsible for the neurodegenerative spongiform encephalopathies. We have investigated the role of membrane topology in the N-glycosylation of PrP by expressing a C-terminal transmembrane anchored form, PrP-CTM, an N-terminal transmembrane anchored form, PrP-NTM, a double-anchored form, PrP-DA, and a truncated form, PrPDeltaGPI, in human neuroblastoma SH-SY5Y cells. Wild-type PrP, PrP- CTM and PrP-DA were membrane anchored and present on the cell surface as glycosylated forms. In contrast, PrP-NTM, although membrane anchored and localized at the cell surface, was not N-glycosylated. PrPDeltaGPI was secreted from the cells into the medium in a hydrophilic form that was unglycosylated. The 4-fold slower rate at which PrPDeltaGPI was trafficked through the cell compared with wild-type PrP was due to the absence of the GPI anchor not the lack of N-glycans. Retention of PrPDeltaGPI in the endoplasmic reticulum did not lead to its glycosylation. These results indicate that C-terminal membrane anchorage is required for N-glycosylation of PrP.  相似文献   

7.
8.
The topology of FtsW from Streptococcus pneumoniae, an essential membrane protein involved in bacterial cell division, was predicted by computational methods and probed by the alkaline phosphatase fusion and cysteine accessibility techniques. Consistent results were obtained for the seven N-terminal membrane-spanning segments. However, the results from alkaline phosphatase fusions did not confirm the hydropathy analysis of the C-terminal part of FtsW, whereas the accessibility of introduced cysteine residues was in agreement with the theoretical prediction. Based on the combined results, we propose the first topological model of FtsW, featuring 10 membrane-spanning segments, a large extracytoplasmic loop, and both N and C termini located in the cytoplasm.  相似文献   

9.
Membrane topology of the Escherichia coli ExbD protein.   总被引:9,自引:3,他引:6       下载免费PDF全文
The ExbD protein is involved in the energy-coupled transport of ferric siderophores, vitamin B12, and B-group colicins across the outer membrane of Escherichia coli. In order to study ExbD membrane topology, ExbD-beta-lactamase fusion proteins were constructed. Cells expressing beta-lactamase fusions to residues 53, 57, 70, 76, 78, 80, 92, 121, and 134 of ExbD displayed high levels of ampicillin resistance, whereas fusions to residues 9 and 19 conferred no ampicillin resistance. It is concluded that the only hydrophobic segment of ExbD, encompassing residues 23 to 43, forms a transmembrane domain and that residues 1 to 22 are located in the cytoplasm and residues 44 to 141 are located in the periplasm.  相似文献   

10.
The chloroplast 24 kDa RNA binding protein (24RNP) from Spinacea oleracea is a nuclear encoded protein that binds the 3' untranslated region (3'UTR) of some chloroplast mRNAs and seems to be involved in some processes of mRNA metabolism, such as 3'UTR processing, maturation and stabilization. The 24RNP is similar to the 28RNP which is involved in the correct maturation of petD and psbA 3'UTRs, and when phosphorylated, decreases its binding affinity for RNA. In the present work, we determined that the recombinant 24RNP was phosphorylated in vitro either by an animal protein kinase C, a plant Ca(2+)-dependent protein kinase, or a chloroplastic kinase activity present in a protein extract with 3'-end processing activity in which the 24RNP is also present. Phosphorylation of 24RNP increased the binding capacity (B(max)) 0.25 time for petD 3'UTR, and three times for psbA 3'UTR; the affinity for P-24RNP only increased when the interaction with petD was tested. Competition experiments suggested that B(max), not K(d), might be a more important factor in the P-24RNP-3'UTR interaction. The data suggested that the 24RNP role in chloroplast mRNA metabolism may be regulated in vivo by changes in its phosphorylation status carried out by a chloroplastic kinase.  相似文献   

11.
12.
Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.  相似文献   

13.
The murine fatty acid transport protein (FATP1) was identified in an expression cloning screen for proteins that facilitate transport of fatty acids across the plasma membranes of mammalian cells. Hydropathy analysis of this protein suggests a model in which FATP1 has multiple membrane-spanning domains. To test this model, we inserted a hemagglutinin epitope tag at the amino terminus or a FLAG tag at the carboxyl terminus of the FATP1 cDNA and expressed these constructs in NIH 3T3 cells. Both tagged constructs produce proteins of the expected molecular masses and are functional in fatty acid import assays. Indirect immunofluorescence studies with selective permeabilization conditions and protease protection studies of sealed membrane vesicles from cells expressing epitope-tagged FATP1 were performed. These experiments show that the extreme amino terminus of tagged FATP1 is oriented toward the extracellular space, whereas the carboxyl terminus faces the cytosol. Additionally, enhanced green fluorescent protein fusion constructs containing predicted membrane-associated or soluble portions of FATP1 were expressed in Cos7 cells and analyzed by immunofluorescence and subcellular fractionation. These experiments demonstrate that amino acids 1-51, 52-100, and 101-190 contain signals for integral association with the membrane, whereas residues 258-313 and 314-475 are only peripherally membrane-associated. Amino acid residues 191-257 and 476-646 do not direct membrane association and likely face the cytosol. Taken together, these data support a model of FATP1 as a polytopic membrane protein with at least one transmembrane and multiple membrane-associated domains. This study provides the first experimental evidence for topology of a member of the family of plasma membrane fatty acid transport proteins.  相似文献   

14.
Membrane topology of human AGPAT3 (LPAAT3)   总被引:1,自引:0,他引:1  
Integral membrane lysophospholipid acyltransferases (AT) are involved in many reactions that produce phospholipids and triglycerides. Enzymes that utilize lysophosphatidic acid (LPA) as an acceptor substrate have been termed LPAATs, and several are members of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) gene family. Amino acid sequence comparisons with other acyltransferases reveal that AGPATs contain four conserved motifs (I-IV), whose invariant residues appear to be important for catalysis and/or substrate recognition. Although the enzymatic activities of many AGPATs are known, for many members their structural organization within membranes and their exact biological functions are unclear. Recently, a new function for AGPATs was discovered when it was determined that human AGPAT3/LPAAT3 is involved in the structure and function of the Golgi complex. Here we have determined the topological orientation of human AGPAT3/LPAAT3. AGPAT3/LPAAT3 possesses two transmembrane domains, one of which separates motifs I and II, which are thought to form a functional unit that is critical for enzymatic activity. This is a surprising result but similar to a recent study on the topology of human LPAAT 1. The data is consistent with a structural arrangement in which motif I is located in the cytoplasm and motif II is in the endoplasmic reticulum and Golgi lumen, suggesting a different model for AGPAT3/LPAAT3’s enzymatic mechanism.  相似文献   

15.
Membrane topology of the hepatitis C virus NS2 protein   总被引:11,自引:0,他引:11  
The hepatitis C virus (HCV) NS2 protein is a hydrophobic protein. Previous studies indicate that this protein is an integral membrane protein, which is targeted to the membrane of the endoplasmic reticulum (ER) by the signal sequence located in its preceding p7 protein. In this report, we demonstrate that the membrane association of NS2 is p7-independent and occurs co-translationally. Further deletion-mapping studies suggest the presence of two internal signal sequences in NS2. These two internal signal sequences, which are located within amino acids 839-883 and amino acids 928-960, could target the alpha-globin reporter, a cytosolic protein, to the membrane compartments in HuH7 hepatoma cells. The presence of multiple signal sequences for its membrane association suggests that NS2 has multiple transmembrane domains. The glycosylation studies indicate that both amino and carboxyl termini of NS2 are located in the endoplasmic reticulum lumen. Based on these results, a model for the NS2 membrane topology is presented.  相似文献   

16.
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and form a pore in the host membrane. Here we adapted a sequence motif recognized by a host kinase to demonstrate that residues on the carboxyl-terminal side of the EspB transmembrane domain are localized to the host cell cytoplasm. Using functional internal polyhistidine tags, we confirm an interaction between EspD and EspB, and we demonstrate, for the first time, an interaction between EspD and the hydrophilic translocator protein EspA. Using a panel of espB insertion mutations, we describe two regions on either side of a putative transmembrane domain that are required for the binding of EspB to EspD. Finally, we demonstrate that EspB variants incapable of binding EspD fail to adopt the proper host cell membrane topology. These results provide new insights into interactions between translocator proteins critical for virulence.  相似文献   

17.
The gene I protein (pI) of the filamentous bacteriophage f1 is required for the assembly of this virus. Antibodies specific to either the amino or carboxyl terminus of this protein were used to determine the location and topology of the gene I protein in f1-infected bacteria. pI is anchored in the inner membrane of Escherichia coli cells via a 20-amino-acid hydrophobic stretch, with its carboxyl-terminal 75 residues located in the periplasm and its amino-terminal 253 amino acids residing in the cytoplasm. By using the carboxyl-terminal pI antibody, a smaller protein, pI*, is also detected in f1-infected cells at a ratio of one to two molecules per molecule of pI. Analysis of proteins produced from a gene I amber mutant plasmid or bacteriophage suggests that pI* is most likely the result of an in-frame internal translational initiation event at methionine 241 of the 348-amino-acid pI. pI* is shown to be an integral inner membrane protein inserted in the same orientation as pI. The relation of the cellular locations of pI and pI* to some of the proposed functions of pI is discussed.  相似文献   

18.
19.
A monoclonal antibody to an oocyte-specific poly(A) RNA-binding protein   总被引:4,自引:0,他引:4  
Xenopus oocyte-specific poly(A) RNA-binding proteins were isolated and used to prepare monoclonal antibodies. One antibody was used to characterize one particular antigen by immunoblot analysis. The antigen had a molecular weight of 56,000 was oocyte-specific, and decreased in amount during oogenesis. The antigen was localized in the cytoplasm throughout oogenesis and sedimented mainly at 40-60 S. The antigen also was shown to bind poly(A) RNA following chromatography of ribonucleoprotein particles on oligo(dT)-cellulose. The antibody was used to immunoadsorb nontranslating ribonucleoprotein particles. Fifty-five per cent of the poly(A) RNA sedimenting between 40-60 S was shown to be bound by the antigen. The further use of this antibody in attempting to examine other components of the ribonucleoprotein particle is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号