首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F.  相似文献   

2.
Neuromedin U (NMU) is an endogenous peptide, whose role in the regulation of feeding and energy homeostasis is well documented. Two NMU receptors have been identified: NMUR1, expressed primarily in the periphery, and NMUR2, expressed predominantly in the brain. We recently demonstrated that acute peripheral administration of NMU exerts potent but acute anorectic activity and can improve glucose homeostasis, with both actions mediated by NMUR1. Here, we describe the development of a metabolically stable analog of NMU, based on derivatization of the native peptide with high molecular weight poly(ethylene) glycol (PEG) ('PEGylation'). PEG size, site of attachment, and conjugation chemistry were optimized, to yield an analog which displays robust and long-lasting anorectic activity and significant glucose-lowering activity in vivo. Studies in NMU receptor-deficient mice showed that PEG-NMU displays an expanded pharmacological profile, with the ability to engage NMUR2 in addition to NMUR1. In light of these data, PEGylated derivatives of NMU represent promising candidates for the treatment of obesity and diabetes.  相似文献   

3.
Recombinant human metapneumovirus (HMPV) in which the SH, G, or M2 gene or open reading frame was deleted by reverse genetics was evaluated for replication and vaccine efficacy following topical administration to the respiratory tract of African green monkeys, a permissive primate host. Replication of the deltaSH virus was only marginally less efficient than that of wild-type HMPV, whereas the deltaG and deltaM2-2 viruses were reduced sixfold and 160-fold in the upper respiratory tract and 3,200-fold and 4,000-fold in the lower respiratory tract, respectively. Even with the highly attenuated mutants, there was unequivocal HMPV replication at each anatomical site in each animal. Thus, none of these three proteins is essential for HMPV replication in a primate host, although G and M2-2 increased the efficiency of replication. Each gene-deletion virus was highly immunogenic and protective against wild-type HMPV challenge. The deltaG and deltaM2-2 viruses are promising vaccine candidates that are based on independent mechanisms of attenuation and are appropriate for clinical evaluation.  相似文献   

4.
The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans.  相似文献   

5.
朱汝南  钱渊  赵林清  孙宇  邓洁  王芳 《病毒学报》2011,27(6):557-564
为了探讨北京地区儿童中流行的人偏肺病毒(Human metapneumovirus,hMPV)结构蛋白基因特征,本研究着重对hMPV北京地区地方株的基质蛋白(Matrix protein,M)、小疏水蛋白(Small hydrophobic protein,SH)和粘附蛋白(Attachment protein,G)基因进行了基因特征的分析。本研究对2006年至2010年42株hMPV的M蛋白、49株SH蛋白和55株G蛋白基因特征进行了分析,进化分析显示北京地区流行的hMPV的这3个编码蛋白基因分别属于A2、B1和B2基因亚型。地方株M基因高度保守,A和B基因型之间存在7个氨基酸位点的变异(型内高度保守)。不同基因型(A和B)和不同基因亚型(A2和B1、A2和B2)之间的SH基因的氨基酸同源性在60.7%~64.4%之间,而同一基因亚型内的氨基酸同源性则在93.3%~100%之间;同一基因型不同基因亚型之间(B1和B2)的氨基酸同源性在84.7%~88.7%之间。不同年份不同基因亚型G蛋白具有遗传多样性,使用不同的终止密码、核苷酸缺失和插入导致其核苷酸长度不同,变异程度相当高。不同基因型和不同基因亚型之间的G基因的氨基酸同源性在34.0%~38.6%之间,同一基因亚型内的氨基酸同源性在81.5%~100%之间;同一基因型不同基因亚型之间的氨基酸同源性在64.3%~69.2%之间。2008年至2010年的B2基因亚型的毒株大多数在多个位点出现了相同的氨基酸突变,同时出现了2个氨基酸的插入或重复插入,这些毒株在B2基因亚型内形成了一个新的进化簇。抗原位点预测分析显示不同基因亚型的SH和G蛋白的抗原位点均存在差异。  相似文献   

6.
7.
The design of attenuated vaccines for respiratory syncytial virus (RSV) historically focused on viruses made sensitive to physiologic temperature through point mutations in the genome. These prototype vaccines were not suitable for human infants primarily because of insufficient attenuation, genetic instability, and reversion to a less-attenuated phenotype. We therefore sought to construct novel attenuated viruses with less potential for reversion through genetic alteration of the attachment G protein. Complete deletion of G protein was previously shown to result in RSV strains overly attenuated for replication in mice. Using reverse genetics, recombinant RSV (rRSV) strains were engineered with truncations at amino acid 118, 174, 193, or 213 and respectively designated rA2cpDeltaG118, rA2cpDeltaG174, rA2cpDeltaG193, and rA2cpDeltaG213. All rA2cpDeltaG strains were attenuated for growth in vitro and in the respiratory tracts of BALB/c mice but not restricted for growth at 37 degrees C. The mutations did not significantly affect nascent genome synthesis in human lung epithelial (A549) cells, but infectious rA2cpDeltaG virus shed into the culture medium was dramatically diminished. Hence, the data suggested that a site within the C-terminal 85 amino acids of G protein is important for efficient genome packaging or budding of RSV from the infected cell. Vaccination with the rA2cpDeltaG strains also generated efficacious immune responses in mice that were similar to those elicited by the temperature-sensitive cpts248/404 strain previously tested in human infants. Collectively, the data indicate that the rA2cpDeltaG strains are immunogenic, not likely to revert to the less-attenuated phenotype, and thus candidates for further development as vaccines against RSV.  相似文献   

8.
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-Å resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.  相似文献   

9.
Human respiratory syncytial virus (RSV) is the most important viral cause of serious pediatric respiratory illness worldwide. Currently, the most promising live-attenuated vaccine candidate is a temperature-sensitive (ts) cDNA-derived virus named rA2cp248/404/1030ΔSH, in reference to its set of attenuating mutations. In a previous clinical study, more than one-third of postvaccination nasal wash isolates exhibited partial loss of the ts phenotype. Most of this instability appeared to be due to reversion at a missense point mutation called 1030. This 1030 mutation is a single-nucleotide tyrosine-to-asparagine substitution at position 1321 (Y1321N) of the polymerase L protein that contributes to the ts and attenuation phenotypes of the vaccine candidate. The goals of the present study were to identify a reversion-resistant codon at position 1321 conferring a comparable level of attenuation and to use this to develop a genetically stable version of the vaccine virus. We modified wild-type (wt) RSV to insert each of the 20 possible amino acids at position 1321; 19 viruses were recoverable. We also investigated small deletions at or near this position, but these viruses were not recoverable. Phenotypic analysis identified alternative attenuating amino acids for position 1321. Several of these amino acids were predicted, based on the genetic code, to be refractory to deattenuation. Classical genetics, using temperature stress tests in vitro combined with nucleotide sequencing, confirmed this stability but identified a second site with a compensatory mutation at position 1313. It was possible to stabilize the 1313 site as well, providing a stable 1030 mutation. Further stress tests identified additional incidental mutations, but these did not reverse the ts/attenuation phenotype. An improved version of the vaccine candidate virus was constructed and validated in vitro by temperature stress tests and in vivo by evaluation of attenuation in seronegative chimpanzees. In addition to developing an improved version of this promising live-attenuated RSV vaccine candidate, this study demonstrated the propensity of an RNA virus to escape from attenuation but also showed that, through systematic analysis, genetics can be used to cut off the routes of escape.  相似文献   

10.
11.
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.  相似文献   

12.
The cytotoxic T-lymphocyte (CTL) response is important for the control of viral replication during respiratory syncytial virus (RSV) infection. The attachment glycoprotein (G) of RSV does not encode major histocompatibility complex class I-restricted epitopes in BALB/c mice (H-2(d)). Furthermore, studies to date have described an absence of significant CTL activity directed against this protein in humans. Therefore, G previously was not considered necessary for the generation of RSV-specific CTL responses. In this study, we demonstrate that, despite lacking H-2(d)-restricted epitopes, G enhances the generation of an effective CTL response against RSV. Furthermore, we show that this stimulatory effect is independent of virus titers and RSV-induced inflammation; that it is associated primarily with the secreted form of G; and that the effect depends on the cysteine-rich region of G (GCRR), a segment conserved in wild-type isolates worldwide. These findings reveal a novel function for the GCRR with potential implications for the generation of protective cellular responses and vaccine development.  相似文献   

13.
A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen.  相似文献   

14.
A previously unrecognized gene (SH) has been identified on the virion RNA of the paramyxovirus simian virus 5 between the genes for the fusion protein and the hemagglutinin-neuraminidase. An SH mRNA of 292 nucleotides (plus polyadenylate residues), transcribed from the SH gene, has been identified. The SH mRNA contains a single open reading frame which encodes a polypeptide of 44 amino acids with a molecular weight of 5,012. The SH polypeptide is predicted to contain an extensive hydrophobic region. This protein has been identified in simian virus 5-infected cells, and it has been shown to be encoded by the SH mRNA by in vitro translation of size-fractionated mRNAs, hybrid-arrest translation, and hybrid-selection translation.  相似文献   

15.
Equine arteritis virus (EAV) is an enveloped plus-strand RNA virus of the family Arteriviridae (order Nidovirales) that causes respiratory and reproductive disease in equids. Protective, virus-neutralizing antibodies (VNAb) elicited by infection are directed predominantly against an immunodominant region in the membrane-proximal domain of the viral envelope glycoprotein G(L), allowing recently the establishment of a sensitive peptide enzyme-linked immunosorbent assay (ELISA) based on this particular domain (J. Nugent et al., J. Virol. Methods 90:167-183, 2000). By using an infectious cDNA we have now generated, in the controlled background of a nonvirulent virus, a mutant EAV from which this immunodominant domain was deleted. This virus, EAV-G(L)Delta, replicated to normal titers in culture cells, although at a slower rate than wild-type EAV, and caused an asymptomatic infection in ponies. The antibodies induced neutralized the mutant virus efficiently in vitro but reacted poorly to wild-type EAV strains. Nevertheless, when inoculated subsequently with virulent EAV, the immunized animals, in contrast to nonvaccinated controls, were fully protected against disease; replication of the challenge virus occurred briefly at low though detectable levels. The levels of protection achieved suggest that an immune effector mechanism other than VNAb plays an important role in protection against infection. As expected, infection with EAV-G(L)Delta did not induce a measurable response in our G(L)-peptide ELISA while the challenge infection of the animals clearly did. EAV-G(L)Delta or similar mutants are therefore attractive marker vaccine candidates, enabling serological discrimination between vaccinated and wild-type virus-infected animals.  相似文献   

16.
将近期引起传染性法氏囊病(IBD)免疫预防失败的传染性法氏囊病病毒(IBDV)vp2基因,定向克隆入杆状病毒表达系统的供体质粒pFastBacHTA中,构建重组供体质粒pFastBacHTA-VP2,转化Escherichia coli DH10Bac感受态,筛选重组杆状病毒表达质粒pBac-VP2。用pBac-VP2转染Sf9昆虫细胞,获得重组杆状病毒vBac-VP2。对重组杆状病毒vBac-VP2感染的Sf9细胞,用间接免疫荧光试验(IFA)检测,具有特异性荧光;用IBDV抗体夹心ELISA检测,呈阳性反应,抗原效价达到1.6×103;用Western blotting分析,在53kDa处出现一条特异蛋白条带;电镜观察,重组Vp2蛋白能够自组装成病毒样颗粒,在感染细胞中发现了"包涵体样"结构。用HisTrap HP亲和层析柱纯化的重组Vp2蛋白作为包被抗原,建立的IBDV抗体间接ELISA检测方法具有良好的特异性。用重组杆状病毒感染的Sf9昆虫细胞裂解物,免疫2周龄SPF鸡,一次免疫14d后,ELISA检测抗体效价为8×102,中和抗体效价为1106,攻毒实验的存活率为30%;二次免疫14d后,ELISA抗体效价为3.2×103,中和抗体效价为2536,存活率为100%。在实验观察7d内,重组Vp2蛋白免疫保护鸡未显任何临床症状和病理变化,法氏囊/体重比高于对照组(P0.05)。本实验制备的病毒样颗粒重组Vp2蛋白在研制新型IBD基因工程疫苗和检测试剂方面显示出了应用前景。  相似文献   

17.
Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. In this study, we have analyzed nucleotide sequences encompassing 629 bp at the carboxy terminus of the G glycoprotein gene for HRSV subgroup A strains isolated over 47 years, including 112 Belgian strains isolated over 19 consecutive years (1984 to 2002). By using a maximum likelihood method, we have tested the presence of diversifying selection and identified 13 positively selected sites with a posterior probability above 0.5. The sites under positive selection correspond to sites of O glycosylation or to amino acids that were previously described as monoclonal antibody-induced in vitro escape mutants. Our findings suggest that the evolution of subgroup A HRSV G glycoprotein is driven by immune pressure operating in certain codon positions located mainly in the second hypervariable region of the ectodomain. Phylogenetic analysis revealed the prolonged cocirculation of two subgroup A lineages among the Belgian population and the possible extinction of three other lineages. The evolutionary rate of HRSV subgroup A isolates was estimated to be 1.83 x 10(-3) nucleotide substitutions/site/year, projecting the most recent common ancestor back to the early 1940s.  相似文献   

18.
Chemokine mRNA expression by pulmonary leukocytes following infection of BALB/c mice with two strains of respiratory syncytial virus (RSV) and one strain of parainfluenza virus type 3 (PIV-3) was determined. The results suggest that RSV G and/or SH proteins inhibit early MIP-1alpha, MIP-1beta, MIP-2, MCP-1, and IP-10 mRNA expression. TCA-3 mRNA expression was found to be increased during PIV-3 infection.  相似文献   

19.
Overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past 30 years, with survival averaging approximately 7 years. This study aimed to identify novel promising biomarkers of LGG and reveal its potential molecular mechanisms by integrated bioinformatics analysis. The microarray datasets of GSE68848 and GSE4290 were selected from GEO database for integrated analysis. In total, 293 overlapping differentially expressed genes (DEGs) were detected using the limma package. One hundred and eighty-eight nodes with 603 interactions were obtained from the establishment of protein-protein interaction (PPI) network. Functional and signaling pathway enriched were significantly correlated with the synapse and calcium signaling pathway, respectively. Module analysis revealed eight hub genes with high connectivity, which included CHRM1, DLG2, GABRD, GRIN1, HTR2A, KCNJ3, KCNJ9, and NUSAP1, and they were markedly correlated with patients’ prognosis. The mining of the Gene Expression Profiling Interactive Analysis database and qPCR further confirmed the abnormal expression of these key genes with their prognostic value in LGG. We eventually predicted the 20 most vital small molecule drugs, which potentially reverse the carcinogenic state of LGG, as per the CMap (connectivity map) database and these DEGs, and MS-275 (enrichment score = −0.939) was considered as the most promising small molecule to treat LGG. In conclusion, our study provided eight reliable novel molecular biomarkers for diagnosis, prognosis prediction, and treatment targets for LGG. These conclusions will contribute to a better comprehension of molecular mechanisms fundamental to LGG occurrence and progression, and providing new insights for future development of genomic individualized treatment in LGG.  相似文献   

20.

Background

H5N1 influenza vaccines, including live intranasal, appear to be relatively less immunogenic compared to seasonal analogs. The main influenza virus surface glycoprotein hemagglutinin (HA) of highly pathogenic avian influenza viruses (HPAIV) was shown to be more susceptible to acidic pH treatment than that of human or low pathogenic avian influenza viruses. The acidification machinery of the human nasal passageway in response to different irritation factors starts to release protons acidifying the mucosal surface (down to pH of 5.2). We hypothesized that the sensitivity of H5 HA to the acidic environment might be the reason for the low infectivity and immunogenicity of intranasal H5N1 vaccines for mammals.

Methodology/Principal Findings

We demonstrate that original human influenza viruses infect primary human nasal epithelial cells at acidic pH (down to 5.4), whereas H5N1 HPAIVs lose infectivity at pH≤5.6. The HA of A/Vietnam/1203/04 was modified by introducing the single substitution HA2 58K→I, decreasing the pH of the HA conformational change. The H5N1 reassortants containing the indicated mutation displayed an increased resistance to acidic pH and high temperature treatment compared to those lacking modification. The mutation ensured a higher viral uptake as shown by immunohistochemistry in the respiratory tract of mice and 25 times lower mouse infectious dose50. Moreover, the reassortants keeping 58K→I mutation designed as a live attenuated vaccine candidate lacking an NS1 gene induced superior systemic and local antibody response after the intranasal immunization of mice.

Conclusion/Significance

Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号