首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focused ultrasound has been used to elicit cutaneous tactile, thermal, specific and nonspecific pain sensations, and also subcutaneous (deep) sensations which included tactile and some pain sensations (muscular and periosteal etc.). It has been found that somatic reception can be attributed to mechanoreception, that the same receptive structures are involved in the sensations of warmth and cold, and that ultrasound has a sensitizing action. Studies have been made of sensation differences from corporal and auricular acupuncture points, and from some chosen skin and subcutaneous points.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg. I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 529–534, September–October, 1992.  相似文献   

2.
In experiments on healthy children as well as on children with inborn and postamputation stumps of the forearm, studies have been made of the relationship between the level of tactile sensitivity in the skin of the forearm and the level of its muscular motor activity; these studies were performed using focused ultrasound in children at the age of 7, 10 and 14 years. It was found that with the increase in motor activity of the forearm, irrespectively of the age, tactile thresholds decrease. The success of prosthetic appliance depends on the ratio between skin tactile sensitivity and motor activity of the forearm. The lowest thresholds were found in 10-year children and in a zone innervated by the median skin nerve of the forearm.  相似文献   

3.
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA‐HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking‐like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

4.
Studies have been made on total impulse activity in the skin nerves of the frog during application of acid solutions as well as during tactile stimulation. It was shown that the reactions to various stimuli differ with respect to their pattern and amplitude of integrated response curve which reflects changes in the frequency of total impulsation. In responses to test solutions and tactile stimulation, different units may be involved which specifically react to each of the stimuli. This specificity of single elements is also revealed during changes in the evoked total activity resulting from superficial skin anaesthesia. Possible nature of peripheral structures involved in these reactions is discussed.  相似文献   

5.
The role of spread of skin deformation in activating cutaneous mechanoreceptors at a distance from their threshold receptive fields (RFs) was examined in glabrous skin of the North American raccoon and the squirrel monkey. One feedback-controlled mechanical stimulus probe was used to indent the skin to a controlled depth at a constant velocity, at varying distances from a second probe, which was used to monitor vertical displacement depth and velocity at this distant site. In many instances, the monitor probe was positioned over the RF of a cutaneous mechanoreceptor, and single-unit action potentials were simultaneously recorded from individual fibers of the median or ulnar nerve.

With distance from the site of stimulation, there was a systematic, monotonic decline in indentation depth and velocity; velocity fell off with distance more rapidly than depth. The degree of diminution with distance varied with the size, shape, and curvature of the digital or palm pad stimulated. Spread of indentation was more restricted on digital than on palm pads, and was more restricted across monkey skin than across raccoon skin. Spread was less with higher-velocity than with lower-velocity indentations, but was seemingly unaffected by indentation depth.

As expected from the findings noted above, the number of spikes discharged by slowly adapting mechanoreceptive afferent fibers declined more rapidly with distance between stimulus site and RF for digital than for palmar RFs, in squirrel monkey than in raccoon skin, and with higher-velocity than with lower-velocity stimuli. Furthermore, the number of spikes occurring during either ramp or early static indentation phases of stimulation dropped to zero more rapidly with distance than did either vertical indentation depth or velocity. Decreases with distance in both indentation depth and velocity acted to restrict the size of suprathreshold RFs. For most units, horizontal components of mechanical stimulation subtracted from the effects of vertical components.

It is suggested, on the basis of this and other studies, that many neural and perceptual phenomena usually attributed to central mechanisms of afferent inhibition may be attributable, at least in part, to mechanical properties of the skin. In addition, the present data suggest that regional variations in the two-point limen may be associated with variations in spread of mechanical deformation. The conclusion that glabrous skin and subjacent soft tissues act as a low-pass filter system provides a mechanical basis for the relative efficacy of high-frequency vibratory stimuli in tactile pattern perception. Finally, the view is presented that the skin and subjacent tissues should be considered, along with cutaneous mechanoreceptors, as forming a tactile receptor organ system.  相似文献   

6.
Quantitative characteristics of the afferent impulse flow in a cat cutaneous nerve during stimulation of the skin with acid, needles, and pins were studied by a cross-correlation method. The appearance of a nociceptive response served as the test of noxious stimulation. Mechanical and chemical noxious stimuli, acting directly on the nerve fiber, activate the same peripheral channels as weak tactile stimuli exciting receptors. Spike trains under these circumstances differed in the absolute and relative numbers of active A and C fibers and the duration of activity in them. The nociceptive response is brought about through marked predominance of activity in C fibers compared with A fibers and through its long duration in both types of fibers but, in particular, in C fibers. An optical correlometer can be used to investigate activity of a whole nerve.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 168–176, March–April, 1976.  相似文献   

7.
Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling.  相似文献   

8.
Hua QP  Luo F 《生理科学进展》2007,38(4):323-326
过去曾认为,人类触觉信息特异地由大直径有髓(Aβ)神经纤维传导。然而最近的研究表明,哺乳动物皮肤的机械感受器不仅有Aβ纤维分布,还有大量低阈值、低传导速度的小直径无髓(C)神经纤维分布,后者对轻微的非伤害性皮肤变形反应敏感,而对快速的皮肤运动反应微弱。初级传入C纤维投射至脊髓浅层,并与脊髓板层II内的次级感觉神经元形成突触联系,再通过脊髓丘脑束投射至岛叶。功能磁共振(fMRI)研究发现,缓慢移动的触觉刺激可以明显地激活岛叶并引起愉悦感,同时还可以激活眶额叶内与愉悦味觉和嗅觉激活区域邻近的部位。这些反应的性质和所激活的部位说明,C纤维触觉主要与边缘系统的功能有关,编码触觉的情绪成分。  相似文献   

9.
Running our fingers across a textured surface gives rise to two types of skin deformations, each transduced by different tactile nerve fibers. Coarse features produce large-scale skin deformations whose spatial configuration is reflected in the spatial pattern of activation of some tactile fibers. Scanning a finely textured surface elicits vibrations in the skin, which in turn evoked temporally patterned responses in other fibers. These two neural codes—spatial and temporal—drive a spectrum of neural response properties in somatosensory cortex: At one extreme, neurons are sensitive to spatial patterns and encode coarse features; at the other extreme, neurons are sensitive to vibrations and encode fine features. While the texture responses of nerve fibers are dependent on scanning speed, those of cortical neurons are less so, giving rise to a speed invariant texture percept. Neurons in high-level somatosensory cortices combine information about texture with information about task variables.  相似文献   

10.
After mechanical destruction of the receptor apparatus, application of focused ultrasound (frequency 2.34 mHz) to the auditory fibers of the frog elicited the electrical activity in the auditory midbrain centers (torus semicircularis). Action potentials evoked by focused ultrasound were similar to those evoked by activation of the intact contralateral labyrinth. After introduction of horseradish peroxidase into the destroyed auditory capsule, fibers activated by ultrasound were detected. Therefore electrophysiological and histochemical experiments reveal stimulating effect of focused ultrasound on the auditory fibers of the VIIIth nerve.  相似文献   

11.
Evoked neural responses to tactile stimulation were recorded electro-physiologically from the mechanoreceptive afferent fibers innervating the buccal and submandibular regions of Wistar rats anesthetized with sodium thiopental. Miniature probes 200 μm in diameter were used, and data analysis was performed on the mechanosensitivity of responses to tactile stimulation in the areas innervated by the mental, mylohyoid, auriculotemporal, and cervical nerves. Mechanosensitivity of each area showed a characteristic distribution of slowly adapting (SA), rapidly adapting (RA), C-fiber (CF), and hair follicle (HF) units in individual receptive fields. The density of the SA units was high in the areas innervated by the mylohyoid and auriculotemporal nerves. The CF units were concentrated in the small dome in the area of the mylohyoid nerve and the auriculotemporal nerve, as shown by a significant response to the dynamic features of stimulation. Estimation of the current needed for tactile acuity suggests an important role of the SA fibers in the areas innervated by the auriculotemporal, mylohyoid, and cervical nerves.  相似文献   

12.
Analysis of single fibers isolated from a branch of the facial/trigeminalcomplex innervating the maxillary barbel of the channel catfish,Ictalurus punctatus, indicated the existence of bimodal (taste/tactile)fibers. Of the 60 single fibers recorded, 14 (23%) respondedto both taste (amino acid) and tactile stimulation, 43 (72%)were responsive to only tactile stimulation and three (5%) respondedonly to taste stimulation. Quinine hydrochloride at a concentrationof 1.0 mM suppressed the mechanosensory activity of the bimodalfibers, but had no effect on the tactile-only fibers. Chem.Senses 22: 477–482, 1997. 1Current address: Department of Otolaryngology, Kagoshima UniversityMedical School, 8-35-1 Sakuragaoka, Kagoshima 890, Japan 2Current address: Department of Oral Physiology, Ohu UniversitySchool of Detistry, 31-1 Misumido, Tomita, Koriyama, Fukushima963, Japan  相似文献   

13.
Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.  相似文献   

14.

Background

Leprosy is an infectious disease affecting skin and peripheral nerves resulting in increased morbidity and physical deformities. Early diagnosis provides opportune treatment and reduces its complications, relying fundamentally on the demonstration of impaired sensation in suggestive cutaneous lesions. The loss of tactile sensitivity in the lesions is preceded by the loss of thermal sensitivity, stressing the importance of the thermal test in the suspicious lesions approach. The gold-standard method for the assessment of thermal sensitivity is the quantitative sensory test (QST). Morphological study may be an alternative approach to access the thin nerve fibers responsible for thermal sensitivity transduction. The few studies reported in leprosy patients pointed out a rarefaction of thin dermo-epidermal fibers in lesions, but used semi-quantitative evaluation methods.

Methodology/Principal Findings

This work aimed to study the correlation between the degree of thermal sensitivity impairment measured by QST and the degree of denervation in leprosy skin lesions, evaluated by immunohistochemistry anti-PGP 9.5 and morphometry. Twenty-two patients were included. There were significant differences in skin thermal thresholds among lesions and contralateral skin (cold, warm, cold induced pain and heat induced pain). The mean reduction in the density of intraepidermal and subepidermal fibers in lesions was 79.5% (SD = 19.6) and 80.8% (SD = 24.9), respectively.

Conclusions/Significance

We observed a good correlation between intraepidermal and subepidermal fibers deficit, but no correlation between these variables and those accounting for the degree of impairment in thermal thresholds, since the thin fibers rarefaction was homogeneously intense in all patients, regardless of the degree of sensory deficit. We believe that the homogeneously intense denervation in leprosy lesions should be objective of further investigations focused on its diagnostic applicability, particularly in selected cases with only discrete sensory impairment, patients unable to perform the sensory test and especially those with nonspecific histopathological finds.  相似文献   

15.
The first data on the responses of tactile receptors of the tonic, phasic, and mixed types to mechanic stimulation of the surface of head skin of fish obtained by means of noninvasive recording of potentials are presented. The sensitivity of skin tactile receptors is the highest in the circumoral and gular zones, which reflects their functional role in foraging behavior.  相似文献   

16.
The Merkel cell-neurite complex is considered to be one class of mechanoreceptors in the skin. Merkel cells are innervated by slowly adapting type I (SAI) tactile nerve fibers. In this paper, the detailed distribution of Merkel cells is studied by immunohistochemical labeling of the monkey (Macaca fascicularis) digital glabrous skin. Specific morphometric variables (density of intermediate epidermal ridges and Merkel cells, distance between skin surface and ridge tips and bases, maximum and average cell counts per ridge, distance between cells and ridges) were measured by a combination of light/fluorescence microscopy and computer-image analysis. The morphometric results were similar for each digit of the monkey's hand. Next, the anatomical data were used to form a three-dimensional reconstruction of the Merkel-cell distribution in the fingertip skin. A patch of the distal-pad surface was then computationally flattened to obtain the two-dimensional distribution of Merkel cells. Based on previous anatomical and physiological data, SAI fibers were simulated to innervate clusters of Merkel cells in the distal-pad surface. On average, 28 cells were innervated by a single fiber. The resulting anatomical model may be used to estimate the population response of SAI fibers by incorporating spike generation.  相似文献   

17.
Over three months of intensive training with a tactile stimulation device, 18 blind and 10 blindfolded seeing subjects improved in their ability to identify geometric figures by touch. Seven blind subjects spontaneously reported 'visual qualia', the subjective sensation of seeing flashes of light congruent with tactile stimuli. In the latter subjects tactile stimulation evoked activation of occipital cortex on electroencephalography (EEG). None of the blind subjects who failed to experience visual qualia, despite identical tactile stimulation training, showed EEG recruitment of occipital cortex. None of the blindfolded seeing humans reported visual-like sensations during tactile stimulation. These findings support the notion that the conscious experience of seeing is linked to the activation of occipital brain regions in people with blindness. Moreover, the findings indicate that provision of visual information can be achieved through non-visual sensory modalities which may help to minimize the disability of blind individuals, affording them some degree of object recognition and navigation aid.  相似文献   

18.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz-1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (-12.5 dB/octave) and bandwidths (Q(3dB) = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors' anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

19.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz–1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (?12.5 dB/octave) and bandwidths (Q3dB = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors’ anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

20.
Summary The epidermal Merkel cells and their sensory innervation serve tactile sensation in vertebrates. In this study the fluorescent cationic mitochondrial dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2-ASP), which has recently been used as a vital stain for motor and autonomic nerve terminals, was tested for its ability to stain Merkel cells and sensory fibers in the snout of the rat. Brightly-fluorescent structures resembling Merkel cells as well as nerve fibers and their terminations were evident in whole mounts of the vibrissal follicle. Unilateral denervation of the vibrissal follicles soon after birth resulted in a staining pattern remarkably similar to that obtained after labelling of the Merkel cells selectively with the fluorescent marker quinacrine, but all fiber staining was abolished. Likewise, in the separated epidermis of other skin regions, including the hairy and glabrous skin of the nose, the staining pattern revealed by 4-Di-2-ASP was indistinguishable from that obtained by quinacrine fluorescence. These results indicate that certain styryl pyridinium dyes may be used as vital stains for epidermal Merkel cells as well as cutaneous mechanosensory axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号