首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euryhaline fish possess the ability to compensate for environmental salinity changes through hydro-mineral regulation. A number of proteins have been studied in order to understand water and ion exchanges, known as fish osmoregulation. Sea-bass (Dicentrarchus labrax) cDNA sequences encoding a homologue of mammalian aquaporin (termed AQP1) and a homologue of mammalian aquaglyceroporin (termed AQP3) have been isolated and sequenced. The aquaporin amino acid sequences share respectively more than 60% and 65% identity with other known aquaporins. We have shown that salinity influences aquaporin expression levels in the gill, kidney and digestive tract, the main osmoregulatory organs. AQP1 may have a major osmoregulatory role in water transport in kidney and gut in SW-acclimated fish, whereas AQP3 could be implicated in gill water transport in FW-acclimated fish.  相似文献   

2.
Abstract Some salient characteristics of microbial osmoregulation are reviewed, with specific examples drawn from eukaryotes. As well as the need for an osmoregulatory solute to be 'compatible' with cellular processes under all conditions, the importance of the physiological method of regulating the content of the solute as a factor determining xerotolerance is emphasized. The significance of turgor/volume homeostasis is discussed and examples are cited in which, during exponential growth, there is apparently no homeostatic control of the cellular content of the major osmoregulatory solute. Some implications of this for the overall mechanism of osmoregulation are considered.
A recent experiment is described which raises questions about the timing of an osmoregulatory 'signal' in Saccharomyces cerevisiae . Other experiments are summarized which distinguish between osmoregulatory and compatible solutes in yeast. These experiments implicate trehalose as a non-osmoregulatory compatible solute in certain circumstances.  相似文献   

3.
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.  相似文献   

4.
Mammalian cells are constantly threatened by multiple types of DNA lesions arising from various sources like irradiation, environmental agents, replication errors or by-products of the normal cellular metabolism. If not readily detected and repaired these lesions can lead to cell death or to the transformation of cells giving rise to life-threatening diseases like cancer. Multiple specialized repair pathways have evolved to preserve the genetic integrity of a cell. The increasing number of DNA damage sensors, checkpoint regulators, and repair factors identified in the numerous interconnected repair pathways raises the question of how DNA repair is coordinated. In the last decade, various methods have been developed that allow the induction of DNA lesions and subsequent real-time analysis of repair factor assembly at DNA repair sites in living cells. This combination of biophysical and molecular cell biology methods has yielded interesting new insights into the order and kinetics of protein recruitment and identified regulatory sequences and selective loading platforms for the efficient restoration of the genetic and epigenetic integrity of mammalian cells.  相似文献   

5.
New insights into fish ion regulation and mitochondrion-rich cells   总被引:2,自引:0,他引:2  
Compared to terrestrial animals, fish have to cope with more-challenging osmotic and ionic gradients from aquatic environments with diverse salinities, ion compositions, and pH values. Gills, a unique and highly studied organ in research on fish osmoregulation and ionoregulation, provide an excellent model to study the regulatory mechanisms of ion transport. The present review introduces and discusses some recent advances in relevant issues of teleost gill ion transport and functions of gill ionocytes. Based on accumulating evidence, a conclusive model of NaCl secretion in gills of euryhaline teleosts has been established. Interpretations of results of studies on freshwater fish gill Na+/Cl- uptake mechanisms are still being debated compared with those for NaCl secretion. Current models for Na+/Cl- uptake are proposed based on studies in traditionally used model species. Many reported inconsistencies are claimed to be due to differences among species, various experimental designs, or acclimation conditions. Having the benefit of advanced techniques in molecular/cellular biology, functional genomics, and model animals, several new notions have recently been raised concerning relevant issues of Na+/Cl- uptake pathways. Several new windows have been opened particularly in terms of molecular mechanisms of ionocyte differentiation and energy metabolite transport between gill cells during environmental challenge.  相似文献   

6.
Some insights into energy metabolism for osmoregulation in fish   总被引:1,自引:0,他引:1  
A sufficient and timely energy supply is a prerequisite for the operation of iono- and osmoregulatory mechanisms in fish. Measurements of whole-fish or isolated-gill (or other organs) oxygen consumption have demonstrated regulation of the energy supply during acclimation to different osmotic environments, and such regulation is dependent on species, the situation of acclimation or acclimatization, and life habits. Carbohydrate metabolism appears to play a major role in the energy supply for iono- and osmoregulation, and the liver is the major source supplying carbohydrate metabolites to osmoregulatory organs. Compared with carbohydrates, the roles of lipids and proteins remain largely unclear. Energy metabolite translocation was recently found to occur between fish gill ionocytes and neighboring glycogen-rich (GR) cells, indicating the physiological significance of a local energy supply for gill ion regulatory mechanisms. Spatial and temporal relationships between the liver and other osmoregulatory and non-osmoregulatory organs in partitioning the energy supply for ion regulatory mechanisms during salinity challenges were also proposed. A novel glucose transporter was found to specifically be expressed and function in gill ionocytes, providing the first cue for investigating energy translocation among gill cells. Advanced molecular physiological approaches can be used to examine energy metabolism relevant to a particular cell type (e.g., gill ionocytes), and functional genomics may also provide another powerful approach to explore new metabolic pathways related to fish ion regulation.  相似文献   

7.
Flatfish (Pleuronectiformes) distribution in the environment is influenced by salinity, and varies among species and with developmental stage. Osmoregulatory ability likely plays an important role in defining species and developmental stage-specific distribution. Although the mechanisms of osmoregulation in adult and juvenile teleosts have been widely addressed, far less is known about their larval osmoregulatory physiology. Much of our current understanding of larval fish ion-regulation stems from studies using flatfishes, and this article reviews advances in this field, primarily from the point of view of the developing flatfishes. Addressed here are the ontogeny of salinity tolerance, the development of several important osmoregulatory tissues (the skin, gut, and gill), and the influence of the endocrine system on osmoregulation during early larval development and metamorphosis.  相似文献   

8.
9.
The effect of an increase in salinity on the physiology of thehalotolerant chlorophyte Scenedesmus protuberans was studiedin light-limited continuous cultures. It was observed that agradual, as well as a steep increase in salinity resulted inlower biomass. However, the mechanisms by which this was achievedwere different. In the culture that was exposed to a gradualsalinity increase, respiration and the cellular protein contentof the culture were initially unaffected. However, this culturewas not able to maintain its cellular chlorophyll content and,consequently, gross and net photosynthesis decreased. The culturethat was exposed to a steep salinity increase rapidly reactedby increasing its respiration and cellular protein content,which is ascribed to an induction of osmoregulation. This culturewas able to maintain its gross photosynthesis rate. It is speculatedthat, in this species, a steep salinity increase induces a nearlyimmediate osmoregulatory response, allowing growth to continue.If the cells are exposed to a gradual salinity increase, inductionof osmoregulation lags behind and, consequently, photosynthesisand growth rate will be* affected.  相似文献   

10.
We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.  相似文献   

11.
Cells are under constant assault by endogenous and environmental DNA damaging agents. DNA double strand breaks (DSBs) sever entire chromosomes and pose a major threat to genome integrity as a result of chromosomal fragment loss or chromosomal rearrangements. Exogenous factors such as ionizing radiation, crosslinking agents, and topoisomerase poisons, contribute to break formation. DSBs are associated with oxidative metabolism, form during the normal S phase, when replication forks collapse and are generated during physiological processes such as V(D)J recombination, yeast mating type switching and meiosis. It is estimated that in mammalian cells ∼10 DSBs per cell are formed daily. If left unrepaired DSBs can lead to cell death or deregulated growth, and cancer development. Cellular response to DSB damage includes mechanisms to halt the progression of the cell cycle and to restore the structure of the broken chromosome. Changes in chromatin adjacent to DNA break sites are instrumental to the DNA damage response (DDR) with two apparent ends: to control compaction and to bind repair and signaling molecules to the lesion. Here, we review the key findings related to each of these functions and examine their cross-talk.  相似文献   

12.
13.
Decapod crustaceans exhibit a wide range of osmoregulatory patterns and capabilities from marine osmoconformers to brackish and freshwater hyperregulators to terrestrial hyporegulators. The principal gill salt transport mechanisms proposed to underlie the ability of the better-known taxa to occupy these specific habitats are examined here. Traditional thinking suggests that a graduated series of successively stronger adaptive mechanisms may have driven the occupation of ever more dilute osmotic niches, culminating in the conquest of freshwater and dry land. However, when habitat and osmoregulatory parameters are analyzed quantitatively against the phylogenies of the taxa examined, as illustrated here using a palaemonid shrimp clade, their association becomes questionable and may hold true only in specific cases. We also propose a putative evolution for gill epithelial ion pump and transporter arrangement in a eubrachyuran crab clade whose lineages occupy distinct osmotic niches. By including the systematics of these selected groups, this review incorporates the notion of a protracted time scale, here termed ??phylophysiology??, into decapod osmoregulation, allowing the examination of putative physiological transformations and their underlying evolutionary processes. This approach assumes that species are temporally linked, a factor that can impart phylogenetic structuring, which must be considered in comparative studies. Future experimental models in decapod osmoregulatory physiology should contemplate the phylogenetic relationships among the taxa chosen to better allow comprehension of the transformations arising during their evolution.  相似文献   

14.
Cellular apoptosis susceptibility (CAS) gene is a homologue of the chromosome segregation gene (CSE) in yeast, involved in multiple cellular mechanisms associated with cell proliferation as well as cell death. CAS is highly expressed in proliferating cells but at a lower level in quiescent cells and tissues. Therefore it appears that CAS may play an important role in cancer development. We have previously identified CAS in tilapia non-specific cytotoxic cells (NCC) with a cross-reacting monoclonal antibody. Its expression was up-regulated in NCC in response to apoptosis regulatory factors. In the present report, the molecular cloning and expression of CAS in NCC is described, suggesting the importance of this protein in regulation of teleost immune functions. Furthermore, CAS expression is proposed as one of the mechanisms of regulation of activation induced programmed cell death (AIPCD) in these cytotoxic cells. As CAS expression is ubiquitous, we expect that these studies will help identify proliferating cells protected from apoptosis in additional tissues.  相似文献   

15.
渗透压反应元件结合蛋白(OREBP)是Rel家族的最新成员,是迄今为止唯一已知的哺乳动物细胞渗透压反应调节因子。它最初是作为一种促进渗透压保护基因表达的蛋白在肾髓质细胞中被发现的。最近研究表明,它在胚胎发育、炎症反应、肌生成、HIV复制以及肿瘤细胞的增殖转移等过程中也发挥了十分重要的作用。然而有关高渗环境下OREBP调控机制的认识还很不完整。许多因素参与了OREBP的调控,这些因素都是高渗环境下激活OREBP所必需的,但又都不能独立完成对OREBP的调控。本文对上述因素在高渗环境下OREBP调控中的作用以及它们之间的相互关系进行了综述。  相似文献   

16.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.  相似文献   

17.
Osmostress response of the yeast Saccharomyces   总被引:9,自引:0,他引:9  
Exposure of yeast cells to high osmolarities leads to dehydration, collapse of ion gradients over the plasma membrane and decrease in cell viability. The response of yeast cells to high external osmolarities is designated osmostress response. It is likely that both osmoregulatory and general stress reactions are involved in this so far poorly understood process. Part of the response aims at raising the internal osmotic potential, i.e. the production of osmolytes such as glycerol, and exclusion of toxic solutes. In addition, heat-shock proteins and trehalose are synthesized, probably to protect cellular components and to facilitate repair and recovery. Recent analyses of osmosensitive yeast mutants strongly suggest the involvement of protein kinase-mediated signal-transduction pathways in the maintenance of the osmotic integrity of the cell. This has stimulated interesting hypotheses as to the actual osmosensing mechanism.  相似文献   

18.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

19.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

20.
Fish encounter harsh ionic/osmotic gradients on their aquatic environments, and the mechanisms through which they maintain internal homeostasis are more challenging compared with those of terrestrial vertebrates. Gills are one of the major organs conducting the internal ionic and acid-base regulation, with specialized ionocytes as the major cells carrying out active transport of ions. Exploring the iono/osmoregulatory mechanisms in fish gills, extensive literature proposed several models, with many conflicting or unsolved issues. Recent studies emerged, shedding light on these issues with new opened windows on other aspects, on account of available advanced molecular/cellular physiological approaches and animal models. Respective types of ionocytes and ion transporters, and the relevant regulators for the mechanisms of NaCl secretion, Na(+) uptake/acid secretion/NH(4)(+) excretion, Ca(2+) uptake, and Cl(-) uptake/base secretion, were identified and functionally characterized. These new ideas broadened our understanding of the molecular/cellular mechanisms behind the functional modification/regulation of fish gill ion transport during acute and long-term acclimation to environmental challenges. Moreover, a model for the systematic and local carbohydrate energy supply to gill ionocytes during these acclimation processes was also proposed. These provide powerful platforms to precisely study transport pathways and functional regulation of specific ions, transporters, and ionocytes; however, very few model species were established so far, whereas more efforts are needed in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号