首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An O-specific polysaccharide of Yersinia pseudotuberculosis serovar VII has been isolated and characterized. The polysaccharide consists of colitose, D-glucose and 2-acetamido-2-deoxy-D-galactose in the ratio 1 : 2 : 2. From the results of methylation analysis, partial acid hydrolysis, 1H and 13C NMR spectroscopy the structure of the repeating unit of the O-specific polysaccharide is deduced as follows:  相似文献   

2.
Mild acid hydrolysis of Hafnia alvei strain 2 lipopolysaccharide released no O-specific polysaccharide but instead gave a monomeric octasaccharide repeating unit with N-acetylneuraminic acid as the reducing terminus. In addition, a dimer of the octasaccharide repeating unit, and also a decasaccharide composed of a fragment of the O-specific polysaccharide chain and the core region, were obtained in minute amounts. On the basis of the sugar and methylation analyses, periodate oxidation, and 1H NMR spectroscopy of the lipopolysaccharide hydrolytic products, the biological repeating unit of the O-specific polysaccharide was shown to be a branched octasaccharide: (Formula; see text) The linkage between the O-specific polysaccharide chain and core region has also been determined and has yield strong evidence that N-acetylneuraminic acid is an inherent lipopolysaccharide component. The lipopolysaccharide of H. alvei strain 2 is the first lipopolysaccharide reported to contain 4-substituted neuraminic acid in its O-specific polysaccharide region.  相似文献   

3.
An O-specific polysaccharide from the lipopolysaccharide Yersinia pseudotuberculosis 1A serovar has been isolated and characterized. This compound was shown to contain residues of paratose, 6-deoxy-D-manno-heptose, D-galactose and 2-amino-2-deoxy-D-glucose in equimolar ratios. Using methylation studies, partial acid hydrolysis and 13C NMR spectroscopy, the following structure was proposed for the repeating unit of the O-specific polysaccharide: (Formula: see text).  相似文献   

4.
The O-specific polysaccharide obtained from Shigella dysenteriae type-2 lipopolysaccharide by mild acid hydrolysis consisted of N-acetylgalactosamine, N-acetylglucosamine, D-galactose, D-glucose, and O-acetyl group in the ratio of 2:1:1:1:1. A number of oligosaccharides were obtained by deamination of the N-deacetylated polysaccharide and by Smith degradation of the both native and O-deacetylated polysaccharides. The identification of oligosaccharides along with methylation analysis and chromic anhydride oxidation showed that the polysaccharide was built up of the repeating pentasaccharide units whose proposed structure is given below: (see article) Serological properties of Sh. dysenteriae O-specific polysaccharides are discussed.  相似文献   

5.
The serologically active O-specific polysaccharide has been isolated from the lipopolysaccharide of Yersinia enterocolitica, serovar O: 6.31. Using methylation, partial acid hydrolysis and 13C NMR spectroscopy, the main structural moiety of the O-specific polysaccharide is shown to be the following disaccharide repeating unit: (Formula: see text).  相似文献   

6.
Specific acidic polysaccharide has been isolated from the Shigella boydii type 9 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and L-rhamnose. From the results of methylation analysis, partial acid hydrolysis and 13C NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [----4)DGlcp(alpha 1----4)DGlcAp(beta 1----3)DGlcNAcp(alpha 1----3)LRhap(alpha 1----]n. The lipopolysaccharide from Sh. boydii 9 was fractionated by gel chromatography on the Sephadex G-200 column in a buffer containing sodium deoxycholate into three fractions. PAGE-SDS of the fractions obtained, 13C NMR- and chromato-mass-spectrometry data indicated that the three fractions contained the O-specific polysaccharide as the only carbohydrate component. The substance from the most high-molecular weight fraction contained unusually long O-specific chains (60,000 dalton). In the fat acid composition this fraction differed from other lipopolysaccharides by absence of beta-hydroxymyristic acid.  相似文献   

7.
On the basis of acid hydrolysis, methylation, Smith degradation, selective cleavage with anhydrous hydrogen fluoride, and 13C NMR analysis, the repeating unit of the O-specific polysaccharide of Citrobacter O32 was concluded to have the following structure: (Formula: see text). The repeating unit of the Salmonella arizonae O64 O-specific polysaccharide has the same structure lacking the O-acetyl group.  相似文献   

8.
On mild acid degradation of the Shigella boydii, type 11 lipopolysaccharide, the corresponding O-specific polysaccharide composed of D-glucuronic acid, 2-acetylamino-2-deoxy-D-glucose, D-ribose and L-rhamnose residues in the ratio 1:1:1:3 was obtained. Methylation, partial acid hydrolysis and 13C-NMR spectral data for the polysaccharide led to the structure of the oligosaccharide repeating unit as a branched hexasaccharide: [formula: see text]. Numerous O-acetyl groups attached non-stoichiometrically to the residues of D-glucuronic acid, L-rhamnose and 2-acetylamino-2-deoxy-D-glucose were located with the use of 13C-NMR spectroscopy.  相似文献   

9.
S Das  M Ramm  H Kochanowski    S Basu 《Journal of bacteriology》1994,176(21):6550-6557
The lipopolysaccharide (LPS) was isolated from Pseudomonas syringae pv. coriandricola W-43 by hot phenol-water extraction. Rhamnose and 3-N-acetyl-3-deoxyfucose were found to be the major sugar constituents of the LPS together with N-acetylglucosamine, N-acetylgalactosamine, heptose, and 3-deoxy-D-manno-octulosonic acid (Kdo). The main fatty acids of lipid A of the LPS were 3-OH-C:10, C12:0, 2-OH-C12:0, and 3-OH-C12:0. The O-specific polysaccharide liberated from the LPS by mild-acid hydrolysis was purified by gel permeation chromatography. The compositional analysis of the O-specific polysaccharide revealed the presence of L-rhamnose and 3-N-acetyl-3-deoxy-D-fucose in a molar ratio of 4:1. The primary structure of the O-specific polysaccharide was established by methylation analysis together with 1H and 13C nuclear magnetic resonance spectroscopy, including two-dimensional shift-correlated and one-dimensional nuclear Overhauser effect spectroscopy. The polysaccharide moiety was found to consist of a tetrasaccharide rhamnan backbone, and 3-N-acetyl-3-deoxy-D-fucose constitutes the side chain of the branched pentasaccharide repeating unit of the polysaccharide.  相似文献   

10.
Lipopolysaccharide was extracted from cells of Salmonella enterica serovar Toucra O48 and, after mild acid hydrolysis (1% AcOH, 1 h, 100 degrees C or 0.1 M NaOH-AcOH, pH 4.5, 5 h, 100 degrees C), the O-specific polysaccharide was isolated and characterized. The core and an oligosaccharide containing a fragment of the repeating unit linked to the core region were also obtained, depending on hydrolysis conditions. On the basis of sugar and methylation analyses and NMR spectroscopy of the hydrolysis products, the biological repeating unit of the O-specific polysaccharide was shown to be the following trisaccharide: -->4)-alpha-Neup5Ac(2-->3)-L-alpha-FucpNAc(1-->3)-D-beta-Glc pNAc(1--> The polysaccharide O-chain was substituted with a single molar equivalent of O-acetyl group, distributed between the Neu5Ac O-9 and O-7 positions, in an approximate ratio of 7 : 3.  相似文献   

11.
The lipopolysaccharide was extracted from cells of Hafnia alvei 481-L bacterial strain and, after mild acid hydrolysis, the O-specific polysaccharide was isolated and characterised. On the basis of chemical analyses and NMR spectroscopic studies of the polysaccharide and oligosaccharides obtained after Smith degradation, or hydrogen fluoride treatment, it was found that the repeating unit of the O-specific polysaccharide is a phosphorylated hexasaccharide: [see text]. The biological repeating unit of the H. alvei 481-L O-antigen has galactose phosphate at the nonreducing terminus. Serological tests indicate that this strain represents an individual serotype in the H. alvei genus.  相似文献   

12.
An acidic O-specific polysaccharide (PS) of the agar-digesting bacterium Shewanella japonica with the type strain KMM 3299(T) was obtained by mild acid hydrolysis of the lipopolysaccharide. The polysaccharide was studied by component analysis, methylation analysis, (1)H and (13)C NMR spectroscopy, including 2D NMR experiments. The PS was determined to have the following structure involving three unusual amino sugars:  相似文献   

13.
The phenol-phase soluble antigenic lipopolysaccharide was isolated from Brucella melitensis, strain 565, by the routine phenol/water procedure followed by chromatography on Sepharose 4B. After mild acid hydrolysis and chromatography on Sephadex G-50, the lipopolysaccharide yielded a linear O-specific polysaccharide built up from 1,2-linked 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl units. The structure of the polysaccharide was deduced mainly from the nuclear magnetic resonance and methylation analyses. The phenol-soluble lipopolysaccharide, isolated from commercial vaccine strain B. abortus 19-BA, on mild hydrolysis afforded material, 13C and 1H-NMR spectra of which were identical to those of the O-specific polysaccharide from B. melitensis 565.  相似文献   

14.
Chemical and serological characterization of the Pseudomonas fluorescens IMV 2763 (biovar G) lipopolysaccharide was carried out. The O-specific polysaccharide chain of the lipopolysaccharide is composed of D-mannose, 6-deoxy-L-talose, N-acetyl-D-galactosamine and O-acetyl groups in the ratio of approximately 2:1:1:1. The polysaccharide is branched and a half of residues of 6-deoxytalose and monosubstituted mannose carry O-acetyl groups. On the basis of methylation, partial acid hydrolysis and 13C NMR analysis it was concluded that the repeating unit of the polysaccharide has the following structure: (formula; see text)  相似文献   

15.
The structure of the O-specific polysaccharide isolated by mild acid hydrolysis of the lipopolysaccharide of Mesorhizobium huakuii IFO15243T was studied using methylation analysis and various one- and two-dimensional 1H and 13C NMR experiments. The O-antigen polysaccharide was found to be linear polymer constituted by a trisaccharide repeating unit of the following structure: --> 2)-alpha-L-6dTalp-(1 --> 3)-alpha-L-6dTalp-(1 --> 2)-alpha-L-Rhap-(1 -->.  相似文献   

16.
The specific polysaccharide was obtained from the lipopolysaccharide of Shigella newcastle by mild acid hydrolysis and further purified by permeation chromatography on Sephadex G-50. It was found to consist of L-rhamnose, 2-acetamido-2-deoxy-D-galactose, D-galacturonic acid residues and O-acetyl groups in the molar ratios of 2:1:1:1. On the basis of 1H and 13C nuclear magnetic resonance spectroscopy, methylation analysis, partial acid hydrolysis, Smith degradation, and chromium trioxide oxidation, the following structure can be assigned to the repeating oligosaccharide unit of the polysaccharide:-4)DGalA(beta 1-3)DGalNAc-(beta 1-2)LAc3Rha(alpha 1-2)LRha(alpha 1-, where GalA = galacturonic acid. GalNAc = N-acetylgalactosamine, Ac3Rha = 3-O-acetylrhamnose. The structural and immunochemical data presented prove that Sh. newcastle lipopolysaccharide belongs to a 'non-classical' type of somatic antigens with acidic O-specific polysaccharide chains.  相似文献   

17.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

18.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Providencia alcalifaciens O7 and purified by gel chromatography followed by anion-exchange chromatography. On the basis of full acid hydrolysis, methylation, carboxyl reduction, selective cleavage with anhydrous hydrogen fluoride, and 1H- and 13C-NMR spectroscopy, including two-dimensional 1H,1H homonuclear and H-detected 1H,13C heteronuclear correlation spectroscopy and nuclear Overhauser effect spectroscopy (NOESY), the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: [figure], where Rhap2Ac is 2-O-acetylrhamnopyranose.  相似文献   

19.
Treatment of the O-specific polysaccharide from Shigella dysenteriae Type 3 with hydrazine in the presence of hydrazine sulphate resulted in quantitative N-deacetylation with the formation of a modified polysaccharide containing free amino groups. Oxidation of the modified polysaccharide with periodate did not destroy the 2-amino-2-deoxygalactose residues, thus indicating that they were substituted at position 3. Acid hydrolysis of the modified polysaccharide afforded 3-O-(2-amino-2-deoxy-β-D-galactopyranosyl)-D-galactose, which was identified as the N-acetyl derivative. Deamination of the modified polysaccharide with nitrous acid cleaved the 2-amino-2-deoxy-D-galactopyranosyl linkages to give a pentasaccharide as the major product, which appeared to be the modified chemical repeating unit of the O-specific polysaccharide.  相似文献   

20.
The lipopolysaccharide (LPS) from a new Enterobacteriaceae species, Rahnella aquatilis 2-95, was isolated and investigated. The structural components of the LPS molecule, namely, lipid A, core oligosaccharide, and O-specific polysaccharide, were obtained by mild acid hydrolysis. In lipid A, 3-oxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. The major monosaccharides of the core oligosaccharide were galactose, arabinose, fucose, rhamnose, and an unidentified component. The O-specific polysaccharide was found to be assembled of a repeated trisaccharide unit of the following structure: [structure: see text]. The R. aquatilis 2-95 LPS is less toxic and more pyrogenic as compared to the one from the R. aquatilis 1-95 strain studied earlier. Both acyl and phosphate groups are essential for toxic and pyrogenic activity of R. aquatilis 2-95 LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号