首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2',5'-Oligoadenylate and 2',5'-oligoadenylate phosphodiesterase activity were detected in the human plasma and serum by sensitive radioimmuno assays. The phosphodiesterase in the serum degraded 20 nM of added 2',5'-oligoadenylate in less than 1 hr. Addition of EDTA in the blood sample inhibited the phosphodiesterase activity completely and allowed the measurement of low levels of 2',5'-oligoadenylate. The concentration in the plasma from healty people was in the range of 0.03 to 0.3 nM.  相似文献   

2.
To enhance the resistance of 2-5A (pppA2'p5'A2'p5'A) to degradation by exo- and endonucleases, a phosphorodithioate analog was synthesized using a solid-phase phosphite triester approach with N6-benzoyl-5'-O-dimethoxytrityl-3'-O-t-butyldimethylsilyladenosine 2'-[S-(beta-thiobenzoylethyl)-pyrrolidinophosphorothioamidit e]. 5'-Monophosphorylation was accomplished with 2-[2-(4,4'-dimethoxytrityloxy)-ethylsulfonyl]ethyl-(2-cyanoe thyl)-(N,N- diisopropyl)-phosphoramidite. The resulting product, p5'A2'(s2p)- 5'A2'(s2p)5'A, was approximately 10-fold less effective as an activator of purified human recombinant 2-5A-dependent RNase than was 2-5A itself. This loss of activation ability was related directly to the loss of binding ability of the phosphorodiothioate analog. As predicted, p5'A2'(s2p)5'A2' (s2p)5'A was stable to snake venom phosphodiesterase and the nucleolytic activities of both human lymphoblastoid CEM cell extracts and human serum, under conditions that led to facile degradation of parent 2-5A. This nuclease stability permitted the observation of the CEM cell extracts and human serum phosphatase activity which led to 5'-dephosphorylation of p5'A2'(s2p)5'A2'(s2p)5'A.  相似文献   

3.
beta-Alanyltyrosine derivative of 2',5'-tetraadenylate 5'-triphosphate, pppA2'p5'A2'-p5'A2'p5'A-beta-Ala-Tyr was prepared by coupling of periodate-oxidized pppA2'p5'-A2'p5'A2'p5'A with beta-alanyltyrosine methyl ester, followed by reduction with sodium cyanoborohydride. Its stability to 2',5'-phosphodiesterase and phosphatase was investigated in mouse L cell extract. The 5'-triphosphate of the compound was cleaved gradually to form the 5'-dephosphorylated derivative, A2'p5'A2'p5'A2'p5'A-beta-Ala-Tyr, followed by slow degradation of the 2',5'-phosphodiester bond. On the other hand, pppA2'p5'A2'p5'A2'p5'A was hydrolyzed very quickly under the same conditions. The tetramer derivative bound tightly to the 2',5'-oligoadenylate-dependent endoribonuclease in rabbit reticulocyte lysate or mouse L cell extract and inhibited protein synthesis of mouse L cells more effectively than the unmodified 2',5'-tetraadenylate 5'-triphosphate. The corresponding trimer derivative had slightly weaker activities than the unmodified trimer for binding to the endoribonuclease and for inhibition of protein synthesis. The compound, pppA2'p5'A2'p5'-A2'p5'A-beta-Ala-Tyr, was iodinated easily at the tyrosine residue with 125I, giving a high-specific-radioactivity derivative which was used as a radio-labeled probe in a radiobinding assay for 2',5'-oligoadenylate.  相似文献   

4.
5.
An improved method for purifying 2',5'-oligoadenylate synthetases   总被引:10,自引:0,他引:10  
We describe a new, rapid, and convenient procedure for purifying 2',5'-oligoadenylate synthetases, employing precipitation with ammonium sulfate, fractionation by gel filtration, rapid binding to poly(I) X poly(C) cellulose, and elution with 0.35 M KCl. Unlike previously published methods, the procedure does not require sedimentation of the enzyme at 200,000 X g. Therefore, it is more general and more likely to succeed with synthetases extracted from a variety of cells or tissues, or from different subcellular fractions. We have purified the enzymes from two sources to apparent homogeneity, about 2500-fold from the cytoplasm of HeLa cells in 40% yield and more than 400,000-fold from the cytoplasm of rabbit reticulocytes in 25% yield. The specific activity of the HeLa enzyme is about 4 times higher than reported previously. The physical and functional properties of the pure enzymes are very similar to those reported by others for preparations of 2',5'-oligoadenylate synthetase from rabbit reticulocytes, mouse L cells, and human HeLa cells. A new affinity matrix was prepared by linking periodate-oxidized poly(I) X poly(C) to a hydrazide derivative of finely divided cellulose. Poly(I) X poly(C) cellulose binds about twice as much synthetase as the corresponding amount of poly(I) X poly(C) paper and activates the bound enzyme about three times better.  相似文献   

6.
A nonradioactive multiwell spectrophotometric assay for the interferon-induced enzyme 2',5'-oligoadenylate synthetase measuring the inorganic pyrophosphate produced during oligoadenylate synthesis has been developed. A coupled enzymatic reaction results in a mole to mole formation of NADPH compared to the inorganic pyrophosphate through the use of the three enzymes UDP-Glc pyrophosphorylase (EC2.7.7.9), phosphoglucomutase (EC5.4.2.2), and glucose-6-phosphate dehydrogenase (EC1.1.1.49). The assay is at least as sensitive for measurements of 2',5'-oligoadenylate synthetase activity as the conventional assays using radioactive nucleotides as substrates. Even higher sensitivity of the assay can be obtained by taking advantage of the strong fluorescence of NADPH.  相似文献   

7.
beta-Alanyltyrosine methyl ester derivatives of 2-5 A, ppp-(A2'p5') A-beta-Ala-Tyr, were prepared by coupling of periodate oxidizedn2-5 A with beta-alanyltyrosine methyl ester, followed by reduction with sodium cyanoborohydride. The compounds were resistant to the hydrolysis by 2',5'-phosphodiesterase in the mouse L cells extract. They bound to the 2-5 A dependent RNAse (RNAse L) in the mouse L cells extract and in the rabbit reticulocyte lysate, and displaced by addition of 2-5 A. The compound, pppA2'p5'A2'p5'A2'p5'A-beta-Ala-Tyr, after iodination with 125I, was proved to be useful as a radio-labeled probe for the radiobinding assay for 2-5 A.  相似文献   

8.
Treatment of rats with phenobarbital for three days greatly increases the activity of 2,5 oligoadenylate synthetase in liver nuclei. Analysis of 2',5'-oligoadenylates synthesized in vitro showed that nuclei from both phenobarbital-treated and control rats synthesized 2',5'-oligoadenylates ranging from di- to hexamers. However, nuclei from drug treated rats showed a two fold increase in trimer and tetramer synthesis and a three-four fold increase in longer chained oligoadenylates. There was no change in the nuclear 2'-phosphodiesterase activity as the result of phenobarbital treatment, This activity remained low in nuclei from either the treated or the control rats. To our knowledge, this is the first report on phenobarbital affecting the liver 2',5'-oligoadenylate system.  相似文献   

9.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate-dependent endoribonuclease (RNase L), chirality has been introduced into the 2',5'-oligoadenylate (2-5A, p3An) molecule to give the Rp configuration in the 2',5'-internucleotide backbone and the Sp configuration in the alpha-phosphorus of the pyrophosphoryl moiety of the 5'-terminus. This was accomplished by the enzymatic conversion of (Sp)-ATP alpha S to the 2',5'-phosphorothioate dimer and trimer by the 2-5A synthetase from lysed rabbit reticulocytes. The most striking finding reported here is the ability of the 2',5'-phosphorothioate dimer 5'-triphosphate (i.e., p3A2 alpha S) to bind to and activate RNase L. p3A2 alpha S displaces the p3A4[32P]pCp probe from RNase L with an IC50 of 5 X 10(-7) M, compared to an IC50 of 5 X 10(-9) M for authentic p3A3. Further, p3A2 alpha S activates RNase L to hydrolyze poly(U)-3'-[32P]pCp (20% at 2 X 10(-7) M), whereas authentic p3A2 is unable to activate the enzyme. Similarly, the enzymatically synthesized p3A2 alpha S at 10(-6) M activated RNase L to degrade 18S and 28S rRNA, whereas authentic p3A2 was devoid of activity. p3A3 alpha S was as active as authentic p3A3 in the core--cellulose and rRNA cleavage assays. The absolute structural and configurational assignment of the enzymatically synthesized p3A2 alpha S and p3A3 alpha S was accomplished by high-performance liquid chromatography, charge separation, enzymatic hydrolyses, and comparison to fully characterized chemically synthesized (Rp)- and (Sp)-2', 5'-phosphorothioate dimer and trimer cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A rapid and convenient assay for adenylyl(2' leads to 5')adenosine(A2'p5'A) or adenylyl(3' leads to 5')adenosine(A3'p5'A) phosphodiesterase activities is described. The dinucleotides A3'p5'A and A2'p5'A were labeled to a high specific activity by means of a catalytic-exchange procedure. Degradation studies of each of these labeled dinucleotides showed an asymmetrical distribution of label between the two adenine bases. Enzymatic degradation of [3H]A3'p5'A or [3H]A2'p5'A could be quantitated by first digesting the reaction products with bacterial alkaline phosphatase and then adding a slurry of DEAE-Sephadex. Under conditions described, adenosine did not adsorb to the resin, whereas dinucleotides as well as AMP did adsorb. As a consequence, when liquid scintillation fluid was added to the DEAE-Sephadex reaction mixture slurry, the radioactivity of the dinucleotides and AMP was severely quenched. This permitted a direct estimation of the amount of adenosine liberated during the phosphodiesterase degradation and subsequent alkaline phosphatase digestion. This method was applied to the measurement of A2'p5'A degrading activities in extracts of mouse L cells. Extracts from control mouse L cells were as active in degrading A2'p5'A as extracts from interferon pretreated cells.  相似文献   

11.
Interferon-like proteins synthesized by conceptuses of domestic ruminants inhibit luteolysis during early pregnancy. Although pig conceptuses secrete trophoblast interferons during the period of CL maintenance, estrogen is involved with maintenance of the CL. The principal purposes of this work were to confirm production of trophoblast interferons by porcine conceptuses and to compare the effect of trophoblast interferons on endometrium of pigs and cattle. When measured using Madin-Darby bovine kidney (MDBK) cells challenged with vesicular stomatitis virus, antiviral activity in uterine flushings from cyclic gilts was not detectable throughout the estrous cycle; however, in pregnant gilts, antiviral activity increased from undetectable amounts to 4-11 x 10(3) U on Days 14, 16, and 18. Porcine embryos in culture produced 1,100 U/embryo/ml/24 h. Porcine conceptus secretory proteins induced 2',5'-oligo(A) synthetase in MDBK cells and in endometrial explants of cows but had no measurable effect on 2',5'-oligo(A) synthetase activity of endometrial explants of pigs. Similarly, endometrial 2',5'-oligo(A) synthetase of pregnant pigs was unaffected in vivo during the period of maximal synthesis of conceptus secretory proteins. Porcine conceptus secretory proteins produced no detectable increase in serum antiviral activity or 2',5'-oligo(A) synthetase activity of blood mononuclear leukocytes in utero-ovarian venous blood. These results suggest that conceptus interferons of pigs play different roles in the establishment of pregnancy compared to their roles in ruminants.  相似文献   

12.
R J Suhadolnik  C Lee  K Karikó  S W Li 《Biochemistry》1987,26(22):7143-7149
The chiral and achiral phosphorothioate analogues of 2',5'-oligoadenylates (2-5A) have been enzymatically synthesized from the Sp and Rp isomers of adenosine 5'-O-(2-thiotriphosphate) [(Sp)-ATP beta S and (Rp)-ATP beta S, respectively] and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) by 2-5A synthetase from L929 cells and lysed rabbit reticulocytes. These 2',5'-phosphorothioate analogues were separated, purified, and structurally characterized. While ATP gamma S and (Sp)-ATP beta S were as efficient substrates for the 2-5A synthetase as was ATP, (Rp)-ATP beta S was more than 50-fold less efficient a substrate. The beta- and gamma-phosphorothioates were more resistant to enzymatic hydrolysis than was authentic 2-5A. Compared to 2-5A, there were marked differences in the biological activities of the 2',5'-phosphorothioates as determined by (i) binding to 2-5A-dependent endoribonuclease (RNase L), (ii) activation of RNase L to hydrolyze RNA, and (iii) inhibition of protein synthesis in intact L929 cells. These studies extend previous reports on the elucidation of the stereochemical requirements of 2-5A synthetase and RNase L [Karikó, K., Sobol, R. W., Jr., Suhadolnik, L., Li, S. W., Reichenbach, N. L., Suhadolnik, R. J., Charubala, R., & Pfleiderer, W. (1987) Biochemistry (first of three papers in this issue); Karikó, K., Li, S. W., Sobol, R. W., Jr., Suhadolnik, R. J., Charubala, R., & Pfleiderer, W. (1987) Biochemistry (second of three papers in this issue)] with the phosphorothioate analogues of 2-5A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Synthesis of 2',5'-oligoadenylate by rat liver nuclear matrix protein   总被引:1,自引:0,他引:1  
Nuclear matrix was prepared from unstimulated rat liver by treatment of nuclei with DNAse and 0.4 M NaCl and was further extracted with 2.0 M NaCl. Proteins were bound to poly(rI):(rC)-agarose, incubated with (alpha-32P) adenosine 5'-triphosphate and 2',5'-linked oligoadenylate was isolated from the supernatant. The substance inhibited amino acid incorporation in a reticulocyte translation system and was identified after enzymatic treatment followed by thin-layer chromatography on PEI-cellulose. The possible function of 2',5'-oligo(A) synthetase in the maturation of pre-mRNA associated with nuclear matrix is discussed.  相似文献   

14.
A study of pH dependence for ppp5'A2'p5'A2'p5'A hydrolysis in interferon treated and untreated mouse L-cells extracts led to the detection of two types of the 2'-phosphodiesterase activities: interferon dependent and interferon resistant. Several pH-optima were observed for hydrolysis of ppp5'A2'p5'A2'p5'A in cell extracts after their treatment with non-ionic detergent NP-40 or their differential centrifugation. The 2'-phosphodiesterase activity was found in the membrane fraction as well as in the cytoplasmic one. The presence of several pH-optima for 2'-phosphodiesterase activity in L-cells and changes of the level of this activity depending on the growth stage of cells and time of their interferon treatment indicate the complicated character of the regulation of 2'-5'-oligoadenylate's concentration and localization. The results obtained suggest that in mouse L-cells several 2'-phosphodiesterases or one enzyme in different forms may be present.  相似文献   

15.
The substrate specificity of the interferon-induced mouse L-cell enzyme, 2',5'-oligoadenylate synthetase, was determined with a number of nucleoside 5'-triphosphate analogues. Selected nucleoside 5'-triphosphates were converted to 2',5'-oligonucleotides with the following order of efficiency for the nucleoside: 8-azaadenosine greater than adenosine = 2-chloroadenosine greater than sangivamycin greater than toyocamycin greater than formycin greater than 3-ribosyladenine greater than ribavirin greater than tubercidin greater than adenosine 1-oxide greater than 2-beta-D-ribofuranosylthiazole-4-carboxamide greater than inosine = 1,N6-ethenoadenosine greater than guanosine greater than 8-bromoadenosine = uridine greater than cytidine. Adenosine 5'-((beta, gamma-imidotriphosphate) did not seem to be a recognizable substrate since no detectable product resulted. Either the 2',5'-oligoadenylate synthetase is not as specific as had been previously thought, or there may be more than one 2',5'-oligonucleotide synthetase. The 2',5'-oligonucleotide analogue products in which the adenosine of ppp(A2'P5')nA was replaced by the various nucleoside analogues were separated by DEAE-cellulose column chromatography and the chain length and number of 5'-phosphate residues analyzed by a rapid, efficient high-performance liquid chromatographic (HPLC) system involving ion-pairing C18 reversed-phase column chromatography. Separation of the 5'-mono-, 5'-di-, and 5'-triphosphorylated forms of the 2',5'-oligonucleotide analogue dimers, trimers, tetramers, and pentamers was readily achieved by this useful HPLC system. No 5'-nonphosphorylated forms were detected for any of the 2',5'-oligonucleotide analogue products.  相似文献   

16.
S Shibata  S Kakuta  K Hamada  Y Sokawa  Y Iwakura 《Gene》2001,271(2):261-271
The 2',5'-oligoadenylate synthetase (2-5OAS) is a enzyme that catalyzes synthesis of 2',5'-oligoadenylates (2-5A) in a dsRNA-dependent manner, and known as a major component of the IFN-induced host defense mechanisms against microbial infections. Here, we report the presence of a novel 2-5OAS-like molecule, termed Oasl5, in mice. The size of Oasl5 cDNA was about 2 kb and encoded a protein consisting of 362 aa. The amino acid sequence showed 76% similarity to the mouse 2-5OAS, however, several motifs being important for the enzyme activity were not conserved. The Oasl5 mRNA was most significantly expressed in the brain, and relatively weak expression was found in other organs such as the spleen, kidney, ovary and testis. It was also expressed in embryonic stem (ES) cells. The Oasl5 mRNA expression in ES cells was elevated 5-fold after treatment with IFN and about 2-fold in the brain when stimulated with IFN inducer, polyinosinic-polycytidylic acid (poly[I:C]). In situ hybridization analysis revealed that Oasl5 is expressed in neurons in the central nervous system in adult mice. When Oasl5 was expressed in E. coli, it yielded 42 kDa protein that binds to dsRNA, but it did not show oligoadenylate synthetase activity. These findings suggest a novel function of Oasl5, which are independent of oligoadenylate synthetase activity, in the brain and developing embryos.  相似文献   

17.
The cAMP-dependent induction of 2,5-oligoadenylate (2-5A) synthetase and cAMP-dependent inhibition of 2-5A phosphodiesterase are shown. Variations in activities of cAMP-dependent protein kinase and the enzymes of 2-5A metabolism in the cells deepening into the resting state were found to be compatible with the above finding. A scheme of coordinated action of cAMP and 2-5A is proposed.  相似文献   

18.
We demonstrate here that ethanol, in contrast to heat shock (Chousterman, S., Chelbi-Alix, M.K., and Thang, M.N. (1987) J. Biol. Chem. 262, 4806-4811), induces interferon (IFN) synthesis and its related activities in Madin-Darby bovine kidney (MDBK) cells. The induced IFN is secreted maximally at 6 h, whereas the induction of 2',5'-oligoadenylate synthetase mRNA peaks between 9 and 12 h and its activity at 15 h. The appearance of both 2',5'-oligoadenylate synthetase activity and the antiviral state upon ethanol treatment is prevented by anti-bovine recombinant IFN-beta antibodies. Bovine diarrhea virus infection-free MDBK cells cultured in medium supplemented with serum substitute also gave similar results, thus indicating that IFN synthesis induced by ethanol is not mediated by the activation of bovine diarrhea virus. Together, these results show that: 1) ethanol induces the 2',5'-oligoadenylate synthetase and antiviral activities through IFN-beta production; and 2) the IFN produced does not act directly from inside the cells, but has to be first secreted to bind to its receptor. In MDBK cells, ethanol induces the synthesis of the 70-kDa protein, which precedes the expression of 2',5'-oligoadenylate synthetase; moreover, the transient nature of the synthesis of the hsp 70 in these cells is similar after both heat shock and ethanol treatment.  相似文献   

19.
We have cloned the gene for chicken 2',5'-oligoadenylate synthetase (ChOAS) by the method of polymerase chain reaction with use of ChOAS cDNA sequence. The ChOAS gene is composed of five introns and six exons containing all of the sequence of the ChOAS cDNA from the start to the stop codon. The first five exons of ChOAS gene which encode the OAS catalytic domain have a similar structure to HuOAS1 gene including the exon-intron boundaries. However, the length of introns of ChOAS gene is only 1/7 of those of HuOAS1 gene. The sixth exon of the ChOAS gene encodes the ubiquitin-like (UbL) domain of two consecutive sequence (UbL1 and UbL2) homologous to ubiquitin. ChOAS encoded in a single copy gene has at least two alleles, OAS(*)A and OAS(*)B. The differences between these two alleles are in the sixth exon of the gene; a 96-nucleotide sequence in the UbL1 portion of OAS(*)A is deleted from OAS(*)B. No OAS(*)B gene was detected in nine lines of chickens tested other than Leghorns. Almost the same levels of ChOAS-A and -B proteins induced physiologically in erythrocytes were detected in infant chickens (2-week-old), but in grown-up chickens (6-month-old) the level of erythrocyte OAS-B was markedly reduced in most of B/B chickens. Thus, the UbL domain of ChOAS is responsible for the maintenance of the OAS level in the tissue.  相似文献   

20.
Chloroquine, a weak base which raises the pH in acidic cellular compartments such as lysosomes and endosomes, counteracts the induction by interferon of the antiviral state but not that of the 2',5'-oligoadenylate synthetase in three different types of cell lines (MDBK, WISH, and L929). Active interferon is recovered in crude extracts of cells which have been treated with interferon and chloroquine together, but not in extracts of cells treated with interferon alone, indicating that chloroquine has inhibited the intralysosomal proteolysis of interferon. A low pH-dependent event in the intracellular fate of interferon (perhaps its intralysosomal degradation) is, therefore, necessary for the establishment of the antiviral state but not for the induction of the 2',5'-oligoadenylate synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号