首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species.  相似文献   

2.
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently‐bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild‐caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population‐level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate‐level differences in virulence may play an important role.  相似文献   

3.
I isolated the first set of polymorphic microsatellite markers from the house finch, Carpodacus mexicanus, a well‐studied North American bird species, as part of an effort to compare levels of genetic diversity in introduced and native populations. Here, I describe eight independently assorting microsatellite loci screened for polymorphism using 40 house finches. Polymorphism levels ranged from six to 14 alleles (mean = 10.6), making these markers a powerful tool for paternity and population level analyses of this widely distributed North American species.  相似文献   

4.
In 1994, Mycoplasma gallisepticum, a common bacterial poultry pathogen, caused an epidemic in house finches in the eastern part of their North American range where the species had been introduced in the 1940s. Birds with mycoplasmal conjunctivitis were reported across the entire eastern United States within 3–4 years. Here we track the course of the Mycoplasma gallisepticum epidemic as it reached native, western North American populations of the house finch. In 2002, Mycoplasma gallisepticum was first observed in a native house finch population in Missoula, MT, where it gradually increased in prevalence during the next 2 years. Concurrently, house finches with conjunctivitis were reported with increasing number in the Pacific Northwest. In native populations of the host, the epidemic expanded more slowly, and reached lower levels of prevalence than in the eastern, introduced range of the species. Maximal prevalence was about half in the Missoula population than in local populations in the East. Although many factors can contribute to these differences, we argue that it is most likely the higher genetic heterogeneity in western than in eastern populations caused the lower impact of the pathogen.  相似文献   

5.
The house finch (Carpodacus mexicanus) is a native songbird of western North America that was introduced to the eastern United States and Hawaiian Islands in historic times. As such, it provides an unusually good opportunity to test the ability of molecular markers to recover recent details of a known population history. To investigate this prospect, genetic variation in 172 individuals from 16 populations in the western and eastern United States, southeastern Canada, Hawaiian Islands, and Mexico, as well as genetic variation in the closely related purple finch (Carpodacus purpureus) and Cassin's finch (Carpodacus cassinii) was studied by a semi-automated fluorescence-labeled amplified fragment length polymorphism (AFLP) marker system. A total of 363 markers were generated, of which 258 (71.2%) were polymorphic among species, 166 (61.4%) polymorphic among house finch subspecies, and 157 (60.2%) polymorphic among populations within the frontalis subspecies complex. Heterozygosities and interpopulation divergences revealed by the analysis appeared relatively low at all taxonomic levels, but there are few similar studies in avian populations with which to compare results. Whereas the known population history predicts that both eastern and Hawaiian finches should have been derived from within western populations, tree analysis using both populations and individuals as units suggests weak monophyly of eastern populations and indicates that Hawaiian populations are not clearly derived from California populations. However, the genetic distinctiveness of native and recently founded populations was disclosed by analyses of molecular variance as well as by a model-based assignment approach in which 98%, 94%, and 99% individuals from western, Hawaiian, and eastern regions, respectively, were assigned correctly to their populations without using prior information on population of origin, suggesting that these recent introductions have resulted in detectable differentiation without substantial loss of AFLP diversity. Our results indicate that AFLPs are a useful tool for population genetic and evolutionary studies of birds, particularly as a prelude to finding molecular markers linked to traits subjected to recent adaptive evolution.  相似文献   

6.
Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive. To identify likely source populations in the USA and to compare the genetic diversity of both native and introduced populations, an extensive molecular genetic study was undertaken using the COII region of mtDNA and 15 microsatellite loci. Our results showed that native northern US populations appeared well differentiated from those of the southern part of the US range. Phylogenetic analysis of both mitochondrial and nuclear markers showed that French populations probably originated from southeastern US populations, and more specifically from Louisiana. All of the mtDNA haplotypes shared between the United States and France were found in Louisiana. Compared to native populations in Louisiana, French populations show lower genetic diversity at both mtDNA and microsatellite markers. These findings are discussed along with the invasion routes of R. flavipes as well as the possible mechanisms by which French populations have evolved after their introduction.  相似文献   

7.
Hess CM  Wang Z  Edwards SV 《Genetica》2007,129(2):217-225
We present molecular data documenting how introduction to the eastern United States and an epizootic involving a bacterial pathogen has affected the genetic diversity of house finches, a cardueline songbird. Population bottlenecks during introduction can cause loss of genetic variation and may negatively affect a population's ability to adapt to novel stressors such as disease. Although a genome-wide survey using Amplified Fragment Length Polymorphism (AFLP) markers suggests little loss of genetic diversity in introduced populations, an epizootic of bacterial Mycoplasma has nonetheless caused dramatic declines in the eastern US population. Sequence analysis of a candidate gene for pathogen resistance in the Major Histocompatibity Complex (MHC) in pre- and post-epizootic population samples reveals allele frequency shifts since introduction of the pathogen, but similar shifts are also observed in control populations not exposed to the bacteria, and in a neutral non-coding locus. Expression studies using a novel subtractive hybridization approach indicate decreased expression of the class II MHC locus upon exposure to Mycoplasma, a pattern also seen in MHC class I loci in mice infected with cytomegalovirus and consistent with manipulation of the finch immune system by Mycoplasma. These results will be further expanded using experimental studies as well as examination of evolution of the pathogen genome itself.  相似文献   

8.
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.  相似文献   

9.
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.  相似文献   

10.
The Common Wall Lizard (Podarcis muralis) has established more than 150 non-native populations in Central Europe, stemming from eight geographically distinct evolutionary lineages. While the majority of these introduced populations are found outside the native range, some of these populations also exist at the northern range margin in southwestern Germany. To (i) infer the level of hybridization in contact zones of alien and native lineages; and (ii) compare the genetic diversity among purebred introduced, native and hybrid populations, we used a combination of maternally inherited markers (mtDNA: cytb) and Mendelian markers (microsatellites). Our results suggest a rapid genetic assimilation of native populations by strong introgression from introduced lineages. Discordant patterns of mtDNA and nDNA variation within hybrid populations may be explained by directed mate choice of females towards males of alien lineages. In contrast to previous studies, we found a nonlinear relationship between genetic diversity and admixture level. The genetic diversity of hybrid populations was substantially higher than in introduced and native populations belonging to a single lineage, but rapidly reaching a plateau of high genetic diversity at an admixture level of two. However, even introduced populations with low founder sizes and from one source population retained moderate levels of genetic diversity and no evidence for a genetic bottleneck was found. The extent of introgression and the dominance of alien haplotypes in mixed populations indicate that introductions of non-native lineages represent a serious threat to the genetic integrity of native populations due to the rapid creation of hybrid swarms.  相似文献   

11.
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.  相似文献   

12.
While currently in a state of recovery in the United Kingdom (UK), the grayling (Thymallus thymallus) remains of conservation interest due to its historical decline, socio-economic value and the potential impact of hatchery-reared stock fish on the genetic structure and diversity of wild populations. However, little is known about the levels and distribution of genetic diversity among UK grayling populations. To this end, 27 UK populations of grayling were genotyped across 10 microsatellite loci and sequenced at the mtDNA D-Loop. All populations clustered into four higher-level groups: Northern England, Southern England, Wales, and group consisting of a mixture of native and introduced populations. Ten populations showed evidence of bottleneck or founder effects, and the effective population size (Ne) was low in all populations. In most cases, historical stocking records agreed with the genetic relationships revealed in the study. A D-Loop haplotype network supported the groupings observed in the nuclear data, while phylogenetic inference places the UK populations amongst Central European samples. The combined datasets demonstrate that many of the UK populations can be treated as separate Management Units and we recommend that to preserve population specific genetic diversity, that stocking should be an intervention of last resort. However, if stocking is deemed essential, brood stock should originate from the river to be stocked.  相似文献   

13.
The critically endangered mangrove finch is now limited to one small population on the west coast of Isabela Island in the Galápagos, but 100 years ago multiple populations were found on the islands of Isabela and Fernandina. By accessing genetic datasets through museum sampling, we are able to put current levels of genetic diversity and hybridization with congenerics into a historical context for enhanced conservation. In this study, we compared neutral genetic diversity of the now extinct Fernandina population to historical and current diversity of the Isabela population using 14 microsatellite markers. We found that current genetic diversity of the last remnant population (~80–100 individuals) is far below levels 100 years ago, with only about half of the allelic diversity retained. Current genetic diversity is close to levels in the Fernandina population that went extinct by the 1970s. Bottleneck analysis did not show a strong signature of recent decline, and instead implies that this species may have consistently had low population sizes with wide fluctuations. Hybridization with congeneric woodpecker finches was found in the modern Isabela population, implying that some individuals within the few remaining breeding pairs are finding mates with woodpecker finches. Within the context of historical low population sizes and wide fluctuations, current conservation efforts may help the mangrove finch face current extinction threats and avoid the fate of the Fernandina population. However, this historically small lineage will likely continue to face challenges associated with small specialist species surrounded by a widely-distributed sister lineage producing viable hybrids.  相似文献   

14.
Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species‐trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp‐beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species‐level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation.  相似文献   

15.
Mycoplasma gallisepticum, an important pathogen of poultry, especially chickens and turkeys, emerged in 1994 as the cause of conjunctivitis in house finches (Carpodacus mexicanus) in their eastern range of North America. The resulting epidemic of M. gallisepticum conjunctivitis severely decreased house finch abundance and the continuing endemic disease in the eastern range has been associated with repeating seasonal peaks of conjunctivitis and limitation of host populations. Mycoplasma gallisepticum conjunctivitis was first confirmed in the western native range of house finches in 2002 in a Missoula, Montana, population. Herein, we report further western expansion of M. gallisepticum conjunctivitis in the native range of house finches based on positive polymerase chain reaction results with samples from birds captured in 2004 and 2005 near Portland, Oregon.  相似文献   

16.
Introduced organisms experience founder effects including genetic bottlenecks that result in significant reductions in genetic variation. Genetic bottlenecks may constrain the evolution of phenotypic traits that facilitate success in novel habitats. We examined the effect of introduction into novel environments on genetic diversity of an insect pest, Adelges cooleyi, which was introduced into the eastern United States during the mid nineteenth century. We compared variation in mitochondrial and nuclear genomes in native and introduced samples to determine the effect of introduction on genetic variation experienced by this insect. We also measured an ecologically important phenotype, variation in host preference, in both native and introduced samples to compare variation in that trait with molecular genetic variation. To further investigate the relationship between genetic and phenotypic variation, we examined the degree to which mtDNA haplotypes provide information about host preference. Adelges cooleyi in eastern North America has significantly reduced genetic and phenotypic variation, but this low variation does not appear to have prevented persistence in a novel environment. Introduced insects appear to have retained host preference phenotypes similar to those of insects found where introductions likely originated.  相似文献   

17.
Population bottlenecks may result in the loss of genetic diversity, with potentially negative consequences for species of interest in conservation biology, including rare species, invasive species and biological control agents. We examined mtDNA sequence data and four variable microsatellite loci (SSRs) in the melaleuca psyllid Boreioglycaspis melaleucae, which was introduced from Australia to Florida as a biological control agent of the invasive plant Melaleuca quinquenervia. We sampled psyllids in the native and introduced ranges as well as individuals stored from the original founding population. There was a clear loss of mtDNA haplotype diversity, as well as a loss of rare microsatellite alleles, in the introduced range. However, there was little genetic differentiation between the home and introduced ranges, and no evidence for a genetic bottleneck based on an analysis of heterozygosity with the microsatellite markers. Overall, the data showed that the demographic bottleneck had a limited effect on the genetics of populations in the new range.  相似文献   

18.
Newly founded isolated populations need to overcome detrimental effects of low genetic diversity. The establishment success of a population may therefore depend on various mechanisms such as assortative mating, purging of deleterious alleles, creation of new mutations and/or repeated inflow of new genotypes to reduce the effects of inbreeding and further loss of genetic variation. We compared the level of genetic variation in introduced populations of an insect species (Metrioptera roeselii) far beyond its natural distribution with levels found in their respective founder populations and coupled the data with timing since establishment. This allowed us to analyze if the introduced populations showed signs of temporal changes in genetic variation and have made it possible to evaluate underlying mechanisms. For this, we used neutral genetic markers, seven microsatellite loci and a 676–bp‐long sequence of the mtDNA COI gene. All tested indices (allelic richness, unbiased expected heterozygosity, effective size, haplotype diversity, and nucleotide diversity) except inbreeding coefficient had significantly higher values in populations within the founding populations inside the continuous area of the species distribution compared with the introduced populations. A logarithmic model showed a significant correlation of both allelic richness and unbiased expected heterozygosity with age of the isolated populations. Considering the species' inferred colonization history and likely introduction pathways, we suggest that multiple introductions are the main mechanism behind the temporal pattern observed. However, we argue that influences of assortative mating, directional selection, and effects of an exceptional high intrapopulation mutation rate may have impacts. The ability to regain genetic diversity at this level may be one of the main reasons why M. roeselii successfully continue to colonize northern Europe.  相似文献   

19.
Species introductions provide a rare opportunity to study rapid evolutionary and genetic processes in natural systems, often under novel environmental pressures. Few empirical studies have been able to characterize genetic founder effects associated with demographic bottlenecks at the earliest stages of species introductions. This study utilizes prior mitochondrial DNA information which identifies the putative source population for a recently established ( c . 7 years between import and sampling) species introduction. We investigated the evidence for a founder effect in a highly successful introduction of a Puerto Rican Anolis species that has established itself on Dominica to the localized exclusion of the native, endemic anole. Five highly polymorphic microsatellite loci were used to explore the partitioning of genetic diversity within and between native source, native nonsource, and introduced populations of Anolis cristatellus . Group comparisons reveal significantly lower allelic richness and expected heterozygosity in introduced populations compared to native populations; however, tests for heterozygosity excess relative to allelic richness failed to provide consistent evidence for a founder effect within introduced populations. Significant levels of within-population genetic variation were present in both native and introduced populations. We suggest that aspects of the reproductive ecology of Anolis (high fecundity, sperm storage and multiple paternity) offer an important mechanism by which genetic variation may be maintained following demographic bottlenecks and founder events in some squamate taxa.  相似文献   

20.
To assess the genetic diversity of Japanese native horse populations, we examined seven such populations using mitochondrial DNA (mtDNA) and microsatellite analyses. Four reference populations of Mongolian horses and European breeds were employed as other equids. In the mtDNA analysis, the control region (D-loop) of 411 bp was sequenced, and 12 haplotypes with 33 variable sites were identified in the Japanese native horses. The phylogenetic tree constructed by haplogrouping and using worldwide geographic references indicated that the haplotypes of the Japanese native horses were derived from six equid clusters. Compared with the foreign populations, the Japanese native populations showed lower within-population diversity and higher between-population differentiation. Microsatellite analysis, using 27 markers, found an average number of alleles per locus of 9.6 in 318 native and foreign horses. In most native populations, the within-population diversity was lower than that observed in foreign populations. The genetic distance matrix based on allelic frequency indicated that several native populations had notably high between-population differentiation. The molecular coancestry-based genetic distance matrix revealed that the European populations were differentiated from the Japanese and Mongolian populations, and no clear groups could be identified among the Japanese native horse populations. The genetic distance matrices had few correlations with the geographic distribution of the Japanese native populations. Based on the results of both mtDNA and microsatellite analyses, it could be speculated that each native population was formed by the founder populations derived from Mongolian horses. The genetic construction of each population appears to have been derived from independent breeding in each local area since the time of population fission, and this was accompanied by drastic genetic drift in recent times. This information will help to elucidate the ancestry of Japanese native horses. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号