首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to the subsequent systemic inflammatory response, which may result in multiple organ dysfunction and death. Inflammatory mediators, including chemokines and substance P (SP), are known to play a crucial role in the pathogenesis of acute pancreatitis. It has been shown that pancreatic acinar cells produce the chemokine monocyte chemoattractant protein-1 (MCP-1) in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Similarly, SP levels in the pancreas and pancreatic acinar cell expression of neurokinin-1 receptor, the primary receptor for SP, are both increased during secretagogue-induced experimental pancreatitis. This study aims to examine the functional consequences of exposing mouse pancreatic acinar cells to SP and to determine whether it leads to proinflammatory signaling, such as production of chemokines. Exposure of mouse pancreatic acini to SP significantly increased synthesis of MCP-1, macrophage inflammatory protein-1alpha (MIP-1alpha), as well as MIP-2. Furthermore, SP also increased NF-kappaB activation. The stimulatory effect of SP was specific to chemokine synthesis through the NF-kappaB pathway, since the increase in chemokine production was completely attenuated when pancreatic acini were pretreated with the selective NF-kappaB inhibitor NF-kappaB essential modulator-binding domain peptide. This study shows that SP-induced chemokine synthesis in mouse pancreatic acinar cells is NF-kappaB dependent.  相似文献   

3.
Macrophages produce an array of proinflammatory mediators at sites of inflammation and contribute to the development of inflammatory responses. Important roles for cytokines, such as IL-1 or TNF-alpha, and bacterial products, such as LPS, in this process have been well documented; however, the role for the extracellular matrix proteins, such as collagen, remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, is expressed during differentiation of human monocytes into macrophages, and the interaction of the DDR1b isoform with collagen facilitates their differentiation via the p38 mitogen-activated protein kinase (MAPK) pathway. In this study, we report that the interaction of DDR1b with collagen up-regulates the production of IL-8, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1 in human macrophages in a p38 MAPK- and NF-kappaB-dependent manner. p38 MAPK was critical for DDR1b-mediated, increased NF-kappaB trans-activity, but not for IkappaB degradation or NF-kappaB nuclear translocation, suggesting a role for p38 MAPK in the modification of NF-kappaB. DDR1b-mediated IkappaB degradation was mediated through the recruitment of the adaptor protein Shc to the LXNPXY motif of the receptor and the downstream TNFR-associated factor 6/NF-kappaB activator 1 signaling cascade. Taken together, our study has identified NF-kappaB as a novel target of DDR1b signaling and provided a novel mechanism by which tissue-infiltrating macrophages produce large amounts of chemokines during the development of inflammatory diseases. Intervention of DDR1b signaling may be useful to control inflammatory diseases in which these proteins play an important role.  相似文献   

4.
Accumulating evidence points to cross-talk between FcεRI and CC chemokine receptor (CCR)-mediated signaling pathways in mast cells. Here, we propose that vimentin, a protein comprising type III intermediate filament, participates in such cross-talk for CCL2/monocyte chemotactic protein 1 (MCP-1) production in mast cells, which is a mechanism for allergic inflammation. Co-stimulation via FcεRI, using IgE/antigen, and CCR1, using recombinant CCL3/macrophage inflammatory protein-1α (MIP-1α), increased expression of phosphorylated, disassembled, and soluble vimentin in rat basophilic leukemia (RBL)-2H3 cells expressing human CCR1 (RBL-CCR1 cells) and bone marrow-derived murine mast cells, both models of mucosal type mast cells. Furthermore, co-stimulation enhanced production of CCL2 as well as phosphorylation of MAPK. Treating the cells with p38 MAPK inhibitor SB203580, but not with MEK inhibitor PD98058, reduced CCL2 production, suggesting that p38 MAPK, but not ERK1/2, plays a critical role in the chemokine production. Immunoprecipitation analysis showed that vimentin interacts with phosphorylated ERK1/2 and p38 MAPKs in the co-simulated cells. Preventing disassembly of the vimentin by aggregating vimentin filaments using β,β'-iminodipropionitrile reduced the interaction of vimentin with phosphorylated MAPKs as well as CCL2 production in the cells. Taken together, disassembled vimentin interacting with phosphorylated p38 MAPK could mediate CCL2 production in mast cells upon FcεRI and CCR1 activation.  相似文献   

5.
Le Page C  Wietzerbin J 《Biological chemistry》2003,384(10-11):1509-1513
ADP-ribosylation is involved in nuclear factor kappaB (NF-kappaB)-dependent gene expression induced by lipopolysaccharide in murine macrophages. Here we have investigated the mechanism by which ADP-ribosylation inhibitors block signaling pathways induced in macrophages. In RAW264.7 macrophages the inducers of NF-kappaB activate the production of reactive oxygen species and three mitogen-activated protein kinases (MAPK), the extracellular signal regulated kinase (ERK), the c-jun N-terminal kinase/stress-activated protein kinase (JNK), and p38. We demonstrate that ADP-ribosylation inhibitors specifically inhibit ERK MAPK activation and reduce the release of inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha), IL-6 and nitrite.  相似文献   

6.
Inflammatory chemokines recruit various populations of immune cells that initiate and maintain the inflammatory response against foreign Ags. Although such a response is necessary for the elimination of the Ag, the inflammation has to be eventually resolved in a healthy organism. Neuropeptides such as vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), released after antigenic stimulation, contribute to the termination of an inflammatory response primarily by inhibiting the production of proinflammatory cytokines. Here we investigated the effects of VIP and PACAP on chemokine production. We report that VIP and PACAP inhibit the expression of the macrophage-derived CXC chemokines macrophage inflammatory protein-2 and KC (IL-8), and of the CC chemokines MIP-1alpha, MIP-1beta, monocyte chemoattractant protein 1, and RANTES in vivo and in vitro. The inhibition of chemokine gene expression correlates with an inhibitory effect of VIP/PACAP on NF-kappaB binding and transactivating activity. The VIP/PACAP inhibition of both chemokine production and of NF-kappaB binding and transactivating activity is mediated through the specific VIP receptor VPAC1, and involves both cAMP-dependent and -independent intracellular pathways. In an in vivo model of acute peritonitis, the inhibition of chemokine production by VIP/PACAP leads to a significant reduction in the recruitment of polymorphonuclear cells, macrophages, and lymphocytes into the peritoneal cavity. These findings support the proposed role of VIP and PACAP as key endogenous anti-inflammatory agents and describe a novel mechanism, i.e., the inhibition of the production of macrophage-derived chemokines.  相似文献   

7.
8.
9.
Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini.  相似文献   

10.
11.
Early molecular responses to Influenza A (FLUA) virus strain A/X-31 H3N2 in macrophages were explored using J774.A1 and RAW 264.7 murine cell lines. NF-kappa B (NFκB) was reported to be central to FLUA host-response in other cell types. Our data showed that FLUA activation of the classical NFκB dependent pathway in these macrophages was minimal. Regulator proteins, IkappaB-alpha and –beta (IκBα, IκBβ), showed limited degradation peaking at 2 h post FLUA exposure and p65 was not observed to translocate from the cytoplasm to the nucleus. Additionally, the non-canonical NFκB pathway was not activated in response to FLUA. The cells did display early increases in TNFα and other inflammatory cytokine and chemokine production. Mitogen activated phosphokinase (MAPK) signaling pathways are also reported to control production of inflammatory cytokines in response to FLUA. The activation of the MAPKs, cJun kinases 1 and 2 (JNK 1/2), extracellular regulated kinases 1 and 2 (ERK 1/2), and p38 were investigated in both cell lines between 0.25 and 3 h post-infection. Each of these kinases showed increased phosphorylation post FLUA exposure. JNK phosphorylation occurred early while p38 phosphorylation appeared later. Phosphorylation of ERK 1/2 occurred earlier in J774.A1 cells compared to RAW 264.7 cells. Inhibition of MAPK activation resulted in decreased production of most FLUA responsive cytokines and chemokines in these cells. The results suggest that in these monocytic cells the MAPK pathways are important in the early response to FLUA.  相似文献   

12.
13.
14.
15.
Hepatic stellate cells (HSC) coordinate the liver wound-healing response through secretion of several cytokines and chemokines, including CCL2 (formerly known as monocyte chemoattractant protein-1). In this study, we evaluated the role of different proteins of the MAPK family (ERK, p38(MAPK), and JNK) in the regulation of CCL2 expression by HSC, as an index of their proinflammatory activity. Several mediators activated all three MAPK, including TNF, IL-1, and PDGF. To assess the relative role of the different MAPKs, specific pharmacological inhibitors were used; namely, SB203580 (p38(MAPK)), SP600125 (JNK), and PD98059 (MEK/ERK). The efficacy and specificity of the different inhibitors in our cellular system were verified analyzing the enzymatic activity of the different MAPKs using in vitro kinase assays and/or testing the inhibition of phosphorylation of downstream substrates. SB203580 and SP600125 dose-dependently inhibited CCL2 secretion and gene expression induced by IL-1 or TNF. In contrast, inhibition of ERK did not affect the upregulation of CCL2 induced by the two cytokines. Finally, activin A was also found to stimulate CCL2 expression and to activate ERK, JNK, p38, and their downstream targets. Unlike in cells exposed to proinflammatory cytokines, all three MAPKs were required to induce CCL2 secretion in response to activin. We conclude that members of the MAPK family differentially regulate cytokine-induced chemokine expression in human HSC.  相似文献   

16.
17.
18.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-alpha) is one of the key cytokines elicited by host macrophages upon challenge with pathogenic mycobacteria. Infection of human peripheral blood mononuclear cells or the murine macrophage cell line J774A-1 with Mycobacterium avium induced activation of the mitogen-activated protein kinases (MAPKs) ERK1/2, p38 and c-Jun N-terminal kinase. U0126, an MEK-specific inhibitor, abrogated M. avium-induced TNF-alpha secretion. Transfection of cells with dominant-negative MEK1 led to the suppression of TNF-alpha release in M. avium-challenged macrophages. M. avium activated p38 MAPK and use of the p38 MAPK inhibitor, SB203580, revealed that the p38 signaling pathway negatively regulates activation of ERK1/2 and release of TNF-alpha. Taken together, these results provide evidence that M. avium-induced TNF-alpha release from macrophages depends on an interplay between the ERK1/2 and the p38 MAPK signaling pathways.  相似文献   

20.
Aspergillus fumigatus causes invasive aspergillosis in immunosuppressed patients. In the immunocompetent host, inhaled conidia are cleared by alveolar macrophages. The signaling pathways of the alveolar macrophage involved in the clearance of A. fumigatus are poorly understood. Therefore, we investigated the role of TLRs in the immune response against A. fumigatus and their contribution to the signaling events triggered in murine alveolar macrophages upon infection with A. fumigatus conidia. Specifically, we examined the MAPKs and NF-kappaB activation and cytokine signaling. Our investigations revealed that immunocompetent TLR2, TLR4, and MyD88 knockout mice were not more susceptible to invasive aspergillosis as compared with wild-type mice and that the in vitro phosphorylation of the MAPKs ERK and p38 was not affected in TLR2, TLR4, or MyD88 knockout mice following stimulation with conidia. In vivo experiments suggest that ERK was an essential MAPK in the defense against A. fumigatus, whereas the activation of NF-kappaB appeared to play only a secondary role. In conclusion, our findings demonstrate that TLR2/4 recognition and MyD88 signaling are dispensable for the clearance of A. fumigatus under immunocompetent situations. Furthermore, our data stress the important role of ERK activation in innate immunity to A. fumigatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号