首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-Thr(649) phosphorylation/14-3-3 binding plays a key role in mediating insulin-stimulated glucose uptake in muscle. Contraction has also been proposed to increase phosphorylation of AS160 and TBC1D1 via AMPK, which could be detected by a generic phospho-Akt substrate (PAS) antibody. Here, analysis of AS160 immunoprecipitates from muscle extracts with site-specific phospho-antibodies revealed that contraction and AICAR caused no increase but rather a slight decrease in phosphorylation of the major PAS recognition site AS160-Thr(649). In line with this, contraction failed to enhance 14-3-3 binding to AS160. Consistent with previous reports, we also observed that in situ contraction stimulated the signal intensity of PAS antibody immunoreactive protein of ~150-160 kDa in muscle extracts. Using a TBC1D1 deletion mutant mouse, we showed that TBC1D1 protein accounted for the majority of the PAS antibody immunoreactive signals of ~150-160 kDa in extracts of contracted muscles. Consistent with the proposed role of AS160-Thr(649) phosphorylation/14-3-3 binding in mediating glucose uptake, AS160-Thr(649)Ala knock-in mice displayed normal glucose uptake upon contraction and AICAR in isolated muscles. We conclude that the previously reported PAS antibody immunoreactive band ~150-160 kDa, which were increased upon contraction, does not represent AS160 but TBC1D1, and that AS160-Thr(649)Ala substitution impairs insulin- but neither contraction- nor AICAR-stimulated glucose uptake in mouse skeletal muscle.  相似文献   

2.
The Ca(2+)/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca(2+)-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca(2+)/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase (CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.  相似文献   

3.
Contraction and insulin promote glucose uptake in skeletal muscle through GLUT4 translocation to cell surface membranes. Although the signaling mechanisms leading to GLUT4 translocation have been extensively studied in muscle, the cellular transport machinery is poorly understood. Myo1c is an actin-based motor protein implicated in GLUT4 translocation in adipocytes; however, the expression profile and role of Myo1c in skeletal muscle have not been investigated. Myo1c protein abundance was higher in more oxidative skeletal muscles and heart. Voluntary wheel exercise (4 weeks, 8.2 ± 0.8 km/day), which increased the oxidative profile of the triceps muscle, significantly increased Myo1c protein levels by ~2-fold versus sedentary controls. In contrast, high fat feeding (9 weeks, 60% fat) significantly reduced Myo1c by 17% in tibialis anterior muscle. To study Myo1c regulation of glucose uptake, we expressed wild-type Myo1c or Myo1c mutated at the ATPase catalytic site (K111A-Myo1c) in mouse tibialis anterior muscles in vivo and assessed glucose uptake in vivo in the basal state, in response to 15 min of in situ contraction, and 15 min following maximal insulin injection (16.6 units/kg of body weight). Expression of wild-type Myo1c or K111A-Myo1c had no effect on basal glucose uptake. However, expression of wild-type Myo1c significantly increased contraction- and insulin-stimulated glucose uptake, whereas expression of K111A-Myo1c decreased both contraction-stimulated and insulin-stimulated glucose uptake. Neither wild-type nor K111A-Myo1c expression altered GLUT4 expression, and neither affected contraction- or insulin-stimulated signaling proteins. Myo1c is a novel mediator of both insulin-stimulated and contraction-stimulated glucose uptake in skeletal muscle.  相似文献   

4.
Metformin is a major oral anti‐diabetic drug and is known as an insulin sensitizer. However, the mechanism by which metformin acts is unclear. In this study, we found that AICAR, an AMPK activator, and metformin increased the expression of Rab4 mRNA and protein levels in skeletal muscle C2C12 cells. The promoter activity of Rab4 was increased by metformin in an AMPK‐dependent manner. Metformin stimulated the phosphorylation of AS160, Akt substrate, and Rab GTPase activating protein (GAP), and also increased the phosphorylation of PKC‐zeta, which is a critical molecule for glucose uptake. Knockdown of AMPK blocked the metformin‐induced phosphorylation of AS160/PKC‐zeta. In addition, a colorimetric absorbance assay showed that insulin‐induced translocation of GLUT4 was suppressed in Rab4 knockdown cells. Moreover, Rab4 interacted with PKC‐zeta but not with GLUT4. The C‐terminal‐deleted Rab4 mutant, Rab4ΔCT, showed diffuse sub‐cellular localization, while wild‐type Rab4 localized exclusively to the perinuclear membrane. Unlike Rab4ΔCT, wild‐type Rab4 co‐localized with PKC‐zeta. Together, these results demonstrate that metformin induces Rab4 expression via AMPK‐AS160‐PKC‐zeta and modulates insulin‐mediated GLUT4 translocation. J. Cell. Physiol. 226: 974–981, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Skeletal muscle expresses at least three p38 MAPKs (alpha, beta, gamma). However, no studies have examined the potential regulation of glucose uptake by p38gamma, the isoform predominantly expressed in skeletal muscle and highly regulated by exercise. L6 myotubes were transfected with empty vector (pCAGGS), activating MKK6 (MKK6CA), or p38gamma-specific siRNA. MKK6CA-transfected cells had higher rates of basal 2-deoxy-d-[3H]glucose (2-DG) uptake (P < 0.05) but lower rates of 2,4-dinitrophenol (DNP)-stimulated glucose uptake, an uncoupler of oxidative phosphorylation that operates through an insulin-independent mechanism (P < 0.05). These effects were reversed when MKK6CA cells were cotransfected with p38gamma-specific siRNA. To determine whether the p38gamma isoform is involved in the regulation of contraction-stimulated glucose uptake in adult skeletal muscle, the tibialis anterior muscles of mice were injected with pCAGGS or wild-type p38gamma (p38gammaWT) followed by intramuscular electroporation. Basal and contraction-stimulated 2-DG uptake in vivo was determined 14 days later. Overexpression of p38gammaWT resulted in higher basal rates of glucose uptake compared with pCAGGS (P < 0.05). Muscles overexpressing p38gammaWT showed a trend for lower in situ contraction-mediated glucose uptake (P = 0.08) and significantly lower total GLUT4 levels (P < 0.05). These data suggest that p38gamma increases basal glucose uptake and decreases DNP- and contraction-stimulated glucose uptake, partially by affecting levels of glucose transporter expression in skeletal muscle. These findings are consistent with the hypothesis that activation of stress kinases such as p38 are negative regulators of stimulated glucose uptake in peripheral tissues.  相似文献   

6.
Insulin controls glucose flux into muscle and fat by regulating the trafficking of GLUT4 between the interior and surface of cells. Here, we show that the AS160 Rab GTPase activating protein (GAP) is a negative regulator of basal GLUT4 exocytosis. AS160 knockdown resulted in a partial redistribution of GLUT4 from intracellular compartments to the plasma membrane, a concomitant increase in basal glucose uptake, and a 3-fold increase in basal GLUT4 exocytosis. Reexpression of wild-type AS160 restored normal GLUT4 behavior to the knockdown adipocytes, whereas reexpression of a GAP domain mutant did not revert the phenotype, providing the first direct evidence that AS160 GAP activity is required for basal GLUT4 retention. AS160 is the first protein identified that is specially required for basal GLUT4 retention. Our findings that AS160 knockdown only partially releases basal GLUT4 retention provides evidence that insulin signals to GLUT4 exocytosis by both AS160-dependent and -independent mechanisms.  相似文献   

7.
Insulin stimulates the rapid translocation of intracellular glucose transporters of the GLUT4 isotype to the plasma membrane in fat and muscle cells. The connections between known insulin signaling pathways and the protein machinery of this membrane-trafficking process have not been fully defined. Recently, we identified a 160-kDa protein in adipocytes, designated AS160, that is phosphorylated by the insulin-activated kinase Akt. This protein contains a GTPase-activating domain (GAP) for Rabs, which are small G proteins required for membrane trafficking. In the present study we have identified six sites of in vivo phosphorylation on AS160. These sites lie in the motif characteristic of Akt phosphorylation, and insulin treatment increased phosphorylation at five of the sites. Expression of AS160 with two or more of these sites mutated to alanine markedly inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Moreover, this inhibition did not occur when the GAP function in the phosphorylation site mutant was inactivated by a point mutation. These findings strongly indicate that insulin-stimulated phosphorylation of AS160 is required for GLUT4 translocation and that this phosphorylation signals translocation through inactivation of the Rab GAP function.  相似文献   

8.
There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P < 0.05) NO synthase (NOS) activity (~40%) and dichlorofluorescein (DCF) fluorescence (a marker of oxidant levels; ~95%), which was prevented with a NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA), and antioxidants [nonspecific antioxidant, N-acetylcysteine (NAC); thiol-reducing agent, DTT], respectively. L-NMMA and NAC both attenuated glucose uptake during contraction by ~50% (P < 0.05), and their effects were not additive. Neither the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, which prevents the formation of cGMP, the cGMP-dependent protein (PKG) inhibitor Rp-8-bromo-β-phenyl-1,N2-ethenoguanosine 3',5'-cyclic monophosphorothioate sodium salt nor white light, which breaks S-nitrosylated bonds, affects glucose uptake during contraction; however, DTT attenuated (P < 0.05) contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P < 0.05), without affecting AMPK or p38 MAPK phosphorylation. In conclusion, we provide evidence to suggest that NOS-derived oxidants regulate skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.  相似文献   

9.
The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior muscle lysates resulted in minimal depletion of the PAS band at 160 kDa, suggesting the presence of an additional PAS immunoreactive protein. By immunoprecipitation and mass spectrometry, we identified this protein as the AS160 paralog TBC1D1, an obesity candidate gene regulating GLUT4 translocation in adipocytes. TBC1D1 expression was severalfold higher in skeletal muscles compared with all other tissues and was the dominant protein detected by the anti-PAS antibody at 160 kDa in tibialis anterior and extensor digitorum longus but not soleus muscles. In vivo stimulation by insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR increased TBC1D1 PAS phosphorylation. Using mass spectrometry on TBC1D1 from mouse skeletal muscle, we identified several novel phosphorylation sites on TBC1D1 and found the majority were consensus or near consensus sites for AMPK. Semiquantitative analysis of spectra suggested that AICAR caused greater overall phosphorylation of TBC1D1 sites compared with insulin. Purified Akt and AMPK phosphorylated TBC1D1 in vitro, and AMPK, but not Akt, reduced TBC1D1 electrophoretic mobility. TBC1D1 is a major PAS immunoreactive protein in skeletal muscle that is phosphorylated in vivo by insulin, AICAR, and contraction. Both Akt and AMPK phosphorylate TBC1D1, but AMPK may be the more robust regulator.  相似文献   

10.
The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment.  相似文献   

11.
Engineered muscle may eventually be used as a treatment option for patients suffering from loss of muscle function. The metabolic and contractile function of engineered muscle has not been well described; therefore, the purpose of this experiment was to study glucose transporter content and glucose uptake in engineered skeletal muscle constructs called myooids. Glucose uptake by way of 2-deoxyglucose and GLUT-1 and GLUT-4 transporter protein content was measured in basal and insulin-stimulated myooids that were engineered from soleus muscles of female Sprague-Dawley rats. There was a significant increase in the basal 2-deoxyglucose uptake of myooids compared with adult control (fivefold), contraction-stimulated (3.4-fold), and insulin-stimulated (threefold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). In addition, there was a significant increase in the insulin-stimulated 2-deoxyglucose uptake of myooids compared with adult control soleus muscles in basal conditions (6.5-fold) and adult contraction-stimulated (4.5-fold) and insulin- stimulated (3.9-fold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). There was a significant 30% increase in insulin-stimulated compared with basal 2-deoxyglucose uptake in the myooids. The myooid GLUT-1 protein content was 820% of the adult control soleus muscle, whereas the GLUT-4 protein content was 130% of the control soleus muscle. Myooid GLUT-1 protein content was 6.3-fold greater than GLUT-4 protein content, suggesting that the glucose transport of the engineered myooids is similar in several respects to that observed in both fetal and denervated skeletal muscle tissue.  相似文献   

12.
Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.  相似文献   

13.
Insulin and muscle contractions stimulate glucose transport in skeletal muscle through a translocation of intracellular GLUT4 glucose transporters to the cell surface. Judged by immunofluorescence microscopy, part of the GLUT4 storage sites is associated with the extensive microtubule cytoskeleton found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for < or =8 h did not inhibit insulin- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect.  相似文献   

14.
Wojtaszewski, Jørgen F. P., Bo F. Hansen, BirgitteUrsø, and Erik A. Richter. Wortmannin inhibits both insulin-and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J. Appl. Physiol. 81(4):1501-1509, 1996.The role of phosphatidylinositol (PI) 3-kinasefor insulin- and contraction-stimulated muscle glucose transport wasinvestigated in rat skeletal muscle perfused with a cell-freeperfusate. The insulin receptor substrate-1-associated PI 3-kinaseactivity was increased sixfold upon insulin stimulation but wasunaffected by contractions. In addition, the insulin-stimulated PI3-kinase activity and muscle glucose uptake and transport in individualmuscles were dose-dependently inhibited by wortmannin with one-halfmaximal inhibition values of ~10 nM and total inhibition at 1 µM.This concentration of wortmannin also decreased thecontraction-stimulated glucose transport and uptake by ~30-70%without confounding effects on contractility or on muscle ATP andphosphocreatine concentrations. At higher concentrations(3 and 10 µM), wortmannin completely blocked thecontraction-stimulated glucose uptake but also decreased thecontractility. In conclusion, inhibition of PI 3-kinase with wortmanninin skeletal muscle coincides with inhibition of insulin-stimulated glucose uptake and transport. Furthermore, in contrast to recent findings in incubated muscle, wortmannin also inhibitedcontraction-stimulated glucose uptake and transport. The inhibitoryeffect of wortmannin on contraction-stimulated glucose uptake may beindependent of PI 3-kinase activity or due to inhibition of asubfraction of PI 3-kinase with low sensitivity to wortmannin.

  相似文献   

15.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

16.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

17.
In fat and muscle cells, insulin stimulates the movement to and fusion of intracellular vesicles containing GLUT4 with the plasma membrane, a process referred to as GLUT4 translocation. Previous studies have indicated that Akt [also known as PKB (protein kinase B)] phosphorylation of AS160, a GAP (GTPase-activating protein) for Rabs, is required for GLUT4 translocation. The results suggest that this phosphorylation suppresses the GAP activity and leads to the elevation of the GTP form of one or more Rabs required for GLUT4 translocation. Based on their presence in GLUT4 vesicles and activity as AS160 GAP substrates, Rabs 8A, 8B, 10 and 14 are candidate Rabs. Here, we provide further evidence that Rab10 participates in GLUT4 translocation in 3T3-L1 adipocytes. Among Rabs 8A, 8B, 10 and 14, only the knockdown of Rab10 inhibited GLUT4 translocation. In addition, we describe the subcellular distribution of Rab10 and estimate the fraction of Rab10 in the active GTP form in vivo. Approx. 5% of the total Rab10 was present in GLUT4 vesicles isolated from the low-density microsomes. In both the basal and the insulin state, 90% of the total Rab10 was in the inactive GDP state. Thus, if insulin increases the GTP form of Rab10, the increase is limited to a small portion of the total Rab10. Finally, we report that the Rab10 mutant considered to be constitutively active (Rab10 Q68L) is a substrate for the AS160 GAP domain and, hence, cannot be used to deduce rigorously the function of Rab10 in its GTP form.  相似文献   

18.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

19.
The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPK alpha 1 and AMPK alpha 2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-beta-D-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3-O-methyl-D-glucose (3-MG) uptake. There were dose-dependent increases in AMPK alpha 2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPK alpha1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPK alpha 2 activity and 3-MG uptake but had little effect on AMPK alpha 1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPK alpha 1 and -alpha 2 activity and 3-MG uptake. Although the AMPK alpha 1 and -alpha 2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPK alpha 2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.  相似文献   

20.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed via hindlimb perfusion under basal conditions (no insulin), in the presence of a maximal insulin concentration (10 mU/ml), and after electrically stimulated muscle contraction in the absence of insulin. The perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H-(G)]glucose. Glucose uptake rates in the soleus (slow-twitch oxidative fibers), red gastrocnemius (fast-twitch oxidative-glycolytic fibers), and white gastrocnemius (fast-twitch glycolytic fibers) under basal conditions and after electrically stimulated muscle contraction were not significantly different between the lean and obese rats. However, the rate of glucose uptake during insulin stimulation was significantly lower for obese than for lean rats in all three fiber types. Significant correlations were found for insulin-stimulated glucose uptake and glucose transporter protein isoform (GLUT-4) content of soleus, red gastrocnemius, and white gastrocnemius of lean (r = 0.79) and obese (r = 0.65) rats. In contrast, the relationships between contraction-stimulated glucose uptake and muscle GLUT-4 content of lean and obese rats were negligible because of inordinately low contraction-stimulated glucose uptakes by the solei. These results suggest that maximal skeletal muscle glucose uptake of obese Zucker rats is resistant to stimulation by insulin but not to contractile activity. In addition, the relationship between contraction-stimulated glucose uptake and GLUT-4 content appears to be fiber-type specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号