首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of human peripheral blood T cells by the anti-CD3 antibody OKT3 has been shown to require not only cross-linking of CD3 molecules with multimeric binding of the Fc part of OKT3 to a solid support, but also a second accessory cell-provided signal. Accordingly, measurement of T cell activation in cultures of highly enriched T cells with solid-phase-bound OKT3 can be used to investigate whether other agents can replace accessory cells. In this study we examined the capacity of anti-CD5 monoclonal antibodies to provide the additional activation signal. Resting T cells were prepared by isolating E rosette-positive cells, by removing OKM1(+) and HLA-DR(+) cells by panning, and by subsequent treatment of the cells with L-leucine methyl ester to kill remaining monocytes. These T cells were unresponsive to phytohemagglutinin (PHA) or to solid-phase-bound OKT3. However, when cultured in the presence of an anti-CD5 monoclonal antibody (anti-Leu-1, OKT1, or anti-T1), a proliferative response to solid-phase-bound OKT3 (but not to soluble OKT3 or to PHA) was observed. Anti-CD5 had no functional effect by itself, but in association with solid-phase-bound OKT3 it enhanced IL 2 receptor expression and IL 2 production and it initiated T cell proliferation. T cell proliferation under these conditions could be inhibited by an IL 2 receptor blocking antibody anti-Tac, thus confirming that anti-CD5 provides the second signal for an IL 2-dependent pathway of T cell proliferation. Preincubation of T cells with anti-Leu-1 or OKT1 resulted in complete loss of CD5 antigenicity, and such CD5 modulation was sufficient to induce a proliferative response to solid-phase-bound OKT3. It is concluded that in T cell activation by solid-phase-bound OKT3 the necessary additional signal can be provided by modulation of the CD5 antigen with an anti-CD5 antibody. CD5 therefore appears to be a positive signal receptor on the T cell membrane, whose physiologic ligand still has to be determined.  相似文献   

2.
In this study, we investigate the extracellular and intracellular signals that drive cell cycle progression of activated B cells in the absence of T cell help. We find that brief engagement of the B cell receptor is sufficient to induce a single cell division in a fraction of cells, but that survival during successive cell divisions requires sustained receptor stimulation. In contrast, T cells have been shown previously to commit to multiple cell divisions following brief TCR engagement. Both early and late B cell receptor signals are blocked by inhibitors of phosphoinositide 3-kinase and mammalian target of rapamycin and are associated with S6 kinase activation and increased cell size. The requirement for ongoing Ag receptor signaling can be overcome by engagement of CD40 but only partially by IL-4. Proliferation driven by LPS also requires sustained exposure to the stimulus. These findings reveal checkpoints that may limit T-independent B cell responses when Ag exposure is transient.  相似文献   

3.
We extended our investigations into the genetic requirements and antigen dependence for the induction of polyclonal B lymphocyte proliferation by primed T lymphocytes. By using recombinant inbred mouse strains and antigen-specific T lymphocyte clones that lack alloreactivity, the genetic requirement was mapped to the IA subregion of the MHC. Furthermore, approaches that prevented or limited the accessibility of antigens to the B lymphocyte surface demonstrated that antigen binding onto the B lymphocyte surface was probably not necessary for induction of B lymphocyte proliferation. These experiments suggest strongly that T lymphocyte recognition of B lymphocyte Ia molecules in the absence of sIg cross-linking or in the absence of antigen bound nonspecifically to B lymphocytes can cause cellular activation. Similar T lymphocyte-dependent B lymphocyte activation was seen when Lyb-5- cells from CBA/N mice with the xid defect were cultured. Increases in the number of cells secreting immunoglobulins could be detected in the proliferating B lymphocyte cultures, suggesting that the culture conditions had fulfilled the requirements for B lymphocyte differentiation into antibody-producing cells. Although anti-Ig did not interfere with the B lymphocyte proliferative responses, it did diminish the number of cells secreting immunoglobulins. The implications of these experiments in extending our understanding of the activation pathway of Lyb-5- and Lyb-5+ B lymphocytes are discussed.  相似文献   

4.
The signals required to induce S phase entry in murine splenic B cells were found to be altered by prolonged treatment with low doses of anti-Ig antibody. Whereas fresh splenic B cells are stimulated by the combination of a phorbol ester protein kinase C agonist plus a calcium ionophore, anti-Ig-treated splenic B cells were stimulated by phorbol ester alone, in the absence of a comitogen. The majority of these phorbol ester responsive B cells expressed CD5. The phorbol ester responses of anti-Ig-treated splenic B cells paralleled those previously reported for untreated peritoneal CD5+ B cells in a number of respects: responses were not idiosyncratic to phorbol esters but occurred with nonphorbol protein kinase C agonists; phorbol ester responses were enhanced by IL-4; and, phorbol ester responses occurred rapidly and were greater at 24 than at 48 h. However, the effect of agents that act to raise intracellular levels of cAMP distinguished between anti-Ig-treated splenic B cells and untreated peritoneal B cells in that the phorbol ester responses of the former were enhanced whereas the responses of the latter were inhibited. The present results add a functional dimension to the phenotypic similarity between splenic B cells treated with anti-Ig and resident peritoneal B cells that constitutively express CD5; however, some differences in behavior were noted.  相似文献   

5.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

6.
Murine interleukin-5 (IL-5) binds to its receptor with high and low affinity. It has been shown that the high affinity IL-5 receptor (IL-5-R) is composed of at least two membrane protein subunits and is responsible for IL-5-mediated signal transduction. One subunit of the high affinity IL-5-R is a 60 kDa membrane protein (p60 IL-5-R) whose cDNA was isolated using the anti-IL-5-R monoclonal antibody (mAb), H7. This subunit alone binds IL-5 with low affinity. The second subunit does not bind IL-5 by itself, and is expressed not only on IL-5-dependent cell lines but also on an IL-3-dependent cell line, FDC-P1. Expression of the p60 IL-5-R cDNA in FDC-P1 cells, which do not bind IL-5, reconstituted the high affinity IL-5-R. We have characterized the second subunit of the IL-5-R by using another anti-IL-5-R mAb, R52.120, and the anti-IL-3-R mAb, anti-Aic-2. The anti-Aic-2 mAb down-regulated binding of IL-5 to an IL-5-dependent cell line, Y16. Both R52.120 and anti-Aic-2 mAbs recognized membrane proteins of 130-140 kDa expressed on FDC-P1 and Y16 cells. The R52.120 mAb recognized both murine IL-3-R (AIC2A) and its homologue (AIC2B) expressed on L cells transfected with suitable cDNAs. The high affinity IL-5-R was reconstituted on an L cell transfectant co-expressing AIC2B and p60 IL-5-R, whereas only the low affinity IL-5-R was detected on a transfectant co-expressing AIC2A and p60 IL-5-R.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Antigen stimulation, while eliciting the production of specific antibodies, also induces a nonspecific polyclonal hyperimmunoglobulinemia which includes antibodies directed at previously experienced antigens. It is postulated that these antibodies play an important role in the physiologic maintenance of long term immunologic memory by providing a continuing source of newly synthesized molecules which recapitulate the individuals immunologic history. The immunoglobulin produced during these responses becomes associated with local macrophages through the Fc receptors; this interaction arms these cells thereby enhancing the likelihood of increasingly avid uptake of subsequent antigenic challenges. By greatly promoting the presentation of antigens within lymph node and spleen to long lived, recirculating T and B antigen recognizing cells, immunologic anemnesia is potentiated. Several predictions which follow from this hypothesis are examined, including the clinical immunodeficiency associated with multiple myeloma.  相似文献   

9.
Resting memory B lymphocytes specific for the model protein Ag cytochrome c have been shown to be susceptible to tolerance induction in in vitro splenic fragment cultures. This induction of nonresponsiveness is dependent upon the strength of the interaction between surface Ig and specific Ag, where concentration, valency, affinity, and time of exposure all appear to be important factors, as is the case for tolerance induction in immature or primary B cells. The induction of nonresponsivenes in greater than 80% of Ag-specific memory B cells was achieved by incubation with 1 microM cytochrome polymer for 24 h in the absence of T cell help. Not only were memory B cells unresponsive to specific Ag, they were also unable to become activated through nonspecific uptake and presentation of an Ag to which T cells have been primed, demonstrating that the induction of nonresponsiveness involves more than a modulation or blockade of surface Ig receptors. Although soluble factors collected from activated T cells failed to prevent memory B cells from becoming nonresponsive after surface Ig cross-linking, the direct activation of T cells within splenic fragment cultures did partially inhibit tolerance induction in splenic fragment memory B cells. In addition, the induction of tolerance was partially blocked by protein tyrosine kinase inhibitors, suggesting a physiologic change within the B cells associated with the state of nonresponsiveness and resulting from tyrosine-specific phosphorylation.  相似文献   

10.
Ag presentation in the absence of danger signals and Ag persistence are the inductive processes of peripheral T cell tolerization proposed so far. Nevertheless, it has never been definitively shown that chronic Ag presentation per se can induce T cell tolerance independent of the state of activation of APCs. In the present work, we investigated whether chronic Ag presentation by either resting or activated B cells can induce tolerance of peripheral Ag-specific T cells. We show that CD4(+) T cells that re-encounter the Ag for a prolonged period, presented either by resting or activated Ag-presenting B cells, become nonfunctional and lose any autoimmune reactivity. Thus, when the main APCs are B cells, the major mechanism responsible for peripheral T cell tolerization is persistent Ag exposure, independent of the B cell activation state.  相似文献   

11.
This study has used biochemistry and real time confocal imaging of green fluorescent protein (GFP)-tagged molecules in live cells to explore the dynamics of protein kinase B (PKB) regulation during B lymphocyte activation. The data show that triggering of the B cell antigen receptor (BCR) induces a transient membrane localization of PKB but a sustained activation of the enzyme; active PKB is found in the cytosol and nuclei of activated B cells. Hence, PKB has three potential sites of action in B lymphocytes; transiently after BCR triggering PKB can phosphorylate plasma membrane localized targets, whereas during the sustained B cell response to antigen, PKB acts in the nucleus and the cytosol. Membrane translocation of PKB and subsequent PKB activation are dependent on BCR activation of phosphatidylinositol 3-kinase (PI3K). Moreover, PI3K signals are both necessary and sufficient for sustained activation of PKB in B lymphocytes. However, under conditions of continuous PI3K activation or BCR triggering there is only transient recruitment of PKB to the plasma membrane, indicating that there must be a molecular mechanism to dissociate PKB from sites of PI3K activity in B cells. The inhibitory Fc receptor, the FcgammaRIIB, mediates vital homeostatic control of B cell function by recruiting an inositol 5 phosphatase SHIP into the BCR complex. Herein we show that coligation of the BCR with the inhibitory FcgammaRIIB prevents membrane targeting of PKB. The FcgammaRIIB can thus antagonize BCR signals for PKB localization and prevent BCR stimulation of PKB activity which demonstrates the mechanism for the inhibitory action of the FcgammaRIIB on the BCR/PKB response.  相似文献   

12.
13.
14.
Activation signal requirements for the induction of the IL-2 responsiveness in purified subsets of human resting T cells, T4+ or T8+, have been investigated under the monocyte-depleted conditions. Substantial levels of IL-2 responsiveness were induced in T8+ cells by lectin, Con A, mAb directed against the CD3 Ag, OKT3, Ca2+ ionophore, ionomycin or phorbol ester, PMA. In contrast, none of these stimuli was by itself sufficient for the induction of IL-2 responsiveness in the T4+ subset. The latter cells could, however, be induced to respond to IL-2 by combinations of PMA plus either of Con A, OKT3, or ionomycin (but not any combination of Con A, ionomycin, and OKT3). These data indicate that induction of IL-2 responsiveness in the resting T4+ subset is more complex, possibly requiring two intracellular activation signals, increase in the concentration of intracellular Ca2+ and activation of protein kinase C, whereas either signal may directly trigger IL-2 responsiveness in the resting T8+ cells. The data further suggest that under optimal conditions, growth of both resting T4+ and T8+ subsets may be independent of monocytes.  相似文献   

15.
Polyclonal activation of murine splenic B lymphocytes to secrete immunoglobulin was shown to be subject to regulation by splenic T cells. By admixture of separated B and T cell populations it was demonstrated that normal fresh splenic T cells were able to augment polyclonal B cell responsiveness to LPS up to several-fold. Optimal collaboration between these two cell types ensued when they were co-cultured in equal numbers. T cell-mediated enhancement of polyclonal B cell responses was dependent upon the ability of T cells to divide and was manifested upon T cell interaction with B cells soon after culture initiation. Originally expounded as a one-signal phenomenon, polyclonal activation of lymphocytes by LPS is, under the circumstances described, attributable instead to two distinct, nonspecific signals acting in concert. The observation that T cells from LPS-nonresponder (C3H/HeJ) mice were deficient in the capacity to enhance polyclonal B cell responsiveness of B cells derived from responder (C3H/HeN) mice implied a direct action of LPS on the involved T cells as well as an active role for the T cell signal in this immunoregulatory event. The novel observation of a functional T cell defect in LPS responsiveness in the C3H/HeJ mouse is discussed in terms of its other cellular defects.  相似文献   

16.
Autophagy is a major pathway for degradation of cytoplasmic components, and is induced by some apoptotic stimuli mostly in cancer cells under the condition in which apoptosis is blocked. Ligation of the B cell antigen receptor (BCR) induces apoptosis and plays a crucial role in self-tolerance. However, whether BCR ligation induces autophagy is not clear. Here, we demonstrate that autophagosomes are extensively formed in normal mouse B cells as well as the WEHI-231 B cell line upon induction of BCR ligation-induced apoptosis regardless of whether apoptosis is blocked by overexpression of Bcl-2. In contrast, autophagosomes were not formed during apoptosis of spleen B cells cultured with medium alone or in BCR-ligated BAL17 cells which do not undergo apoptosis. Moreover, autophagy is not induced when apoptotic BCR signaling is abrogated by CD40 signaling. These results indicate that autophagy is induced specifically by apoptotic BCR signaling even in unmanipulated normal B cells.  相似文献   

17.
18.
The B cell antigen receptor (BCR) is a multimeric protein complex consisting of the ligand binding immunoglobulin molecule and the Ig-alpha/beta heterodimer that mediates intracellular signalling by coupling the receptor to protein tyrosine kinases (PTKs). Transfection of the Ig-alpha deficient myeloma cell line J558L microns with expression vectors coding for mutated Ig-alpha allowed us to test the function of the tyrosines in the cytoplasmic region of Ig-alpha in the context of the BCR. Furthermore we expressed Ig-alpha mutations as chimeric CD8-Ig-alpha molecules on K46 B lymphoma cells and tested their signalling capacity in terms of PTK activation and release of calcium. We show here that the conserved tyrosine residues in the cytoplasmic portion of Ig-alpha have a dual role. First, they are required for efficient activation of PTKs during signal induction and second, one of them is subject to phosphorylation by activated src-related PTKs. Phosphorylation on tyrosine in the cytoplasmic portion of Ig-alpha is discussed as a possible mechanism to couple the BCR to SH2 domain-carrying molecules.  相似文献   

19.
Induction of the H-2 D antigen during B cell activation   总被引:1,自引:0,他引:1  
Mitogenic activation causes increased expression of class I Ag of the MHC in mouse B cells. The increased expression was seen in flow cytometry analysis for both K and D in k as well as d haplotypes. A more detailed molecular analysis was carried out for H-2Dd. Increased expression (10- to 20-fold) of the H-2 Dd gene was detected at both protein and messenger RNA levels, and the time course for the accumulation of H-2 Dd protein on the cell surface parallels the increase in the steady-state messenger RNA levels. The increase in H-2 Dd expression in small B cells stimulated with LPS is detectable after 10 h of culture. The present data provide molecular and serologic evidence about alterations in the expression of the H-2 Dd Ag, previously identified as a B cell activation antigen B7.2. Our results indicate a new significance for the function and regulation of the MHC during immune responses, and suggest that the class I molecules may serve some role in the B cell activation process.  相似文献   

20.
More than 90% of G protein-coupled receptors (GPCRs) contain a disulfide bridge that tethers the second extracellular loop (EC2) to the third transmembrane helix. To determine the importance of EC2 and its disulfide bridge in receptor activation, we subjected this region of the complement factor 5a receptor (C5aR) to random saturation mutagenesis and screened for functional receptors in yeast. The cysteine forming the disulfide bridge was the only conserved residue in the EC2-mutated receptors. Notably, approximately 80% of the functional receptors exhibited potent constitutive activity. These results demonstrate an unexpected role for EC2 as a negative regulator of C5a receptor activation. We propose that in other GPCRs, EC2 might serve a similar role by stabilizing the inactive state of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号