首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Directed evolution has been successfully used to engineer proteins for basic and applied biological research. However, engineering of novel protein functions by directed evolution remains an overwhelming challenge. This challenge may come from the fact that multiple simultaneously or synergistic mutations are required for the creation of a novel protein function. Here we review the key developments in engineering of novel protein functions by using either directed evolution or a combined directed evolution and rational or computational design approach. Specific attention will be paid to a molecular evolution model for generation of novel proteins. The engineered novel proteins should not only broaden the range of applications of proteins but also provide new insights into protein structure-function relationship and protein evolution.  相似文献   

2.
Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability.  相似文献   

3.
蛋白质突变体基因库构建方法的研究进展   总被引:3,自引:1,他引:2  
体外定向进化是蛋白质工程中一个非常有效的设计策略。最近几年,在过去常用的寡核苷酸介导的随机突变、易错PCR和DNA改组等方法的基础上又出现了一些新的定向进化方法。本文对这些方法及其特点加以总结,为解决特定问题选取何种方法提供一定依据。最近研究表明:定向进化和理性设计相结合、定向进化和以结构为基础的计算设计方法相结合正成为蛋白质工程中两个新的发展方向。  相似文献   

4.

Glycosidases are used in the food, chemical, and energy industries. These proteins are some of the most frequently used such enzymes, and their thermostability is essential for long-term and/or repeated use. In addition to thermostability, modification of the substrate selectivity and improvement of the glycosidase activities are also important. Thermostabilization of enzymes can be performed by directed evolution via random mutagenesis or by rational design via site-directed mutagenesis; each approach has advantages and disadvantages. In this paper, we introduce thermostabilization of glycoside hydrolases by rational protein design using site-directed mutagenesis along with X-ray crystallography and simulation modeling. We focus on the methods of thermostabilization of glycoside hydrolases by linking the N- and C-terminal ends, introducing disulfide bridges, and optimizing β-turn structures to promote hydrophobic interactions.

  相似文献   

5.
6.
Variation in gene sequences generated by directed evolution approaches often does not assure a minimalist design for obtaining a desired property in proteins. While screening for enhanced thermostability, structural information was utilized in selecting mutations that are generated by error-prone PCR. By this approach we have increased the half-life of denaturation by 300-fold compared to the wild-type Bacillus subtilis lipase through three point mutations generated by only two cycles of error-prone PCR. At lower temperatures the activity parameters of the thermostable mutants are unaltered. High-resolution crystal structures of the mutants show subtle changes, which include stacking of tyrosine residues, peptide plane flipping and a better anchoring of the terminus, that challenge rational design and explain the structural basis for enhanced thermostability. The approach may offer an efficient and minimalist solution for the enhancement of a desired property of a protein.  相似文献   

7.
通过理性设计提高蛋白质的热稳定性一直是当今计算生物学及蛋白质工程领域中的一个研究热点。与传统的定向进化的方法相比,该方法具有目的性强、效率高的优点,对扩大蛋白质的应用范围与探究蛋白质结构和功能的关系均具有重要意义。本文详细介绍了影响蛋白质热稳定性的因素,以及一些常用的通过理性设计来提高蛋白质的热稳定性的策略。由于影响蛋白质热稳定性的因素众多,并且众多因素之间还具有千丝万缕的联系,到目前为止研究人员还没有提出一个公认的适合于所有蛋白质的理性设计的策略,这也是现代计算生物学家及蛋白质工程学家们努力研究的一个重要方向。  相似文献   

8.
Bacillus lipases are industrially attractive enzymes due to their broad substrate specificity and optimum alkaline pH. However, narrow temperature range of action and low thermostability restrain their optimal use and thus, necessitate attention. Several laboratories are engaged in protein engineering of Bacillus lipases to generate variants with improved attributes for decades using techniques such as directed evolution or rational design. This review summarizes the effect of mutations on the conformational changes through in silico modeling and their manifestation with respect to various biochemical parameters. Various studies have been put together to develop a perspective on the molecular basis of biocatalysis of lipases holding industrial importance.  相似文献   

9.
Despite recent advances in our understanding of the importance of protein surface properties for protein thermostability,there are seldom studies on multi-factors rational design strategy, so a more scientific, simple and effective rational strategy is urgent for protein engineering. Here, we first attempted to use a three-factors rational design strategy combining three common structural features, protein flexibility, protein surface, and salt bridges. Escherichia coli AppA phytase was used as a model enzyme to improve its thermostability. Moreover, the structure and enzyme features of the thermostable mutants designed by our strategy were analyzed roundly. For the single mutants, two (Q206E and Y311K), in five exhibited thermostable property with a higher success rate of prediction (40 %). For the multiple mutants, the themostable sites were combined with another site, I427L, we obtained by directed evolution, Q206E/I427L, Y311K/I427L, and Q206E/Y311K/I427L, all exhibited thermostable property. The Y311K/I427L doubled thermostability (61.7 %, and was compared to 30.97 % after being heated at 80 °C for 10 min) and catalytic efficiency (4.46 was compared to 2.37) improved more than the wild-type AppA phytase almost without hampering catalytic activity. These multi-factors of rational design strategy can be applied practically as a thermostabilization strategy instead of the conventional single-factor approach.  相似文献   

10.
The consensus concept for thermostability engineering of proteins   总被引:16,自引:0,他引:16  
Previously, sequence comparisons between a mesophilic enzyme and a more thermostable homologue were shown to be a feasible approach to successfully predict thermostabilizing amino acid substitutions. The 'consensus approach' described in the present paper shows that even a set of amino acid sequences of homologous, mesophilic enzymes contains sufficient information to allow rapid design of a thermostabilized, fully functional variant of this family of enzymes. A sequence alignment of homologous fungal phytases was used to calculate a consensus phytase amino acid sequence. Upon construction of the synthetic gene, recombinant expression and purification, the first phytase obtained, termed consensus phytase-1, displayed an unfolding temperature (T(m)) of 78.0 degrees C which is 15-22 degrees C higher than the T(m) values of all parent phytases used in its design. Refinement of the approach, combined with site-directed mutagenesis experiments, yielded optimized consensus phytases with T(m) values of up to 90.4 degrees C. These increases in T(m) are due to the combination of multiple amino acid exchanges which are distributed over the entire sequence of the protein and mainly affect surface-exposed residues; each individual substitution has a rather small thermostabilizing effect only. Remarkably, in spite of the pronounced increase in thermostability, catalytic activity at 37 degrees C is not compromised. Thus, the design of consensus proteins is a potentially powerful and novel alternative to directed evolution and to a series of rational approaches for thermostability engineering of enzymes and other proteins.  相似文献   

11.
High-throughput screening for enhanced protein stability   总被引:1,自引:0,他引:1  
High thermostability of proteins is a prerequisite for their implementation in biocatalytic processes and in the evolution of new functions. Various protein engineering methods have been applied to the evolution of increased thermostability, including the use of combinatorial design where a diverse library of proteins is generated and screened for variants with increased stability. Current trends are toward the use of data-driven methods that reduce the library size by using available data to choose areas of the protein to target, without specifying the precise changes. For example, the half-lives of subtilisin and a Bacillus subtilis lipase were increased 1500-fold and 300-fold, respectively, using a crystal structure to guide mutagenesis choices. Sequence homology based methods have also produced libraries where 50% of the variants have improved thermostability. Moreover, advances in the high-throughput measurement of denaturation curves and the application of selection methods to thermostability evolution have enabled the screening of larger libraries. The combination of these methods will lead to the rapid improvement of protein stability for biotechnological purposes.  相似文献   

12.
The (beta alpha)(8)-barrel is a versatile single-domain protein fold that is adopted by a large number of enzymes. The (beta alpha)(8)-barrel fold has been used as a model to elucidate the structural basis of protein thermostability and in studies to interconvert catalytic activities or substrate specificities by rational design or directed evolution. Recently, the (beta alpha)(4)-half-barrel was identified as a possible structural subdomain.  相似文献   

13.
Hyperthermophilic organisms optimally grow close to the boiling point of water. As a consequence, their macromolecules must be much more thermostable than those from mesophilic species. Here, proteins from hyperthermophiles and mesophiles are compared with respect to their thermodynamic and kinetic stabilities. The known differences in amino acid sequences and three-dimensional structures between intrinsically thermostable and thermolabile proteins will be summarized, and the crucial role of electrostatic interactions for protein stability at high temperatures will be highlighted. Successful attempts to increase the thermostability of proteins, which were either based on rational design or on directed evolution, are presented. The relationship between high thermo-stability of enzymes from hyperthermophiles and their low catalytic activity at room temperature is discussed. Not all proteins from hyperthermophiles are thermostable enough to retain their structures and functions at the high physiological temperatures. It will be shown how this shortcoming can be surpassed by extrinsic factors such as large molecular chaperones and small compatible solutes. Finally, the potential of thermostable enzymes for biotechnology is discussed.  相似文献   

14.
Enhancement of enzyme thermostability by protein engineering gives us information about the thermostabilization mechanism as well as advantages for industrial use of enzymes. In this study, we enhanced the thermostability of endoglucanase EngB, one component of the cellulase complex (cellulosome) from Clostridium cellulovorans, by the directed evolution technique. The library was constructed by in vitro recombination of the genes for EngB and non-cellulosomal cellulase EngD, based on the fact that the catalytic domains of both cellulases were highly homologous. To obtain thermostable clones without loss of activity, the library was screened by a combination of activity and thermostability screening. We obtained three mutants out of 8000 selected clones that showed significantly higher thermostability than those of EngB and EngD without compromising their endoglucanase activities. One of the mutants possessed a sevenfold higher thermostability than EngB. The possible mechanisms of thermostabilization are discussed.  相似文献   

15.
ABSTRACT: BACKGROUND: Lipase from Rhizopus chinensis is a versatile biocatalyst for various bioconversions and has been expressed at high-level in Pichia pastoris. However, the use of R. chinensis lipase in industrial applications is restricted by its low thermostability. Directed evolution has been proven to be a powerful and efficient protein engineering tool for improvement of biocatalysts. The present work describes improvement of the thermostability of R. chinensis lipase by directed evolution using P. pastoris as the host. RESULTS: An efficient, fast and highly simplified method was developed to create a mutant gene library in P. pastoris based on in vivo recombination, whose recombination efficiency could reach 2.3 x 105 /mug DNA. The thermostability of r27RCL was improved significantly by two rounds of error-prone PCR and two rounds of DNA shuffling in P. pastoris. The S4-3 variant was found to be the most thermostable lipase, under the conditions tested. Compared with the parent, the optimum temperature of S4-3 was two degrees higher, Tm was 22 degrees higher and half-lives at 60degreesC and 65degreesC were 46- and 23- times longer. Moreover, the catalytic efficiency kcat/Km of S4-3 was comparable to the parent. Stabilizing mutations probably increased thermostability by increasing the hydrophilicity and polarity of the protein surface and creating hydrophobic contacts inside the protein. CONCLUSIONS: P. pastoris was shown to be a valuable cell factory to improve thermostability of enzymes by directed evolution and it also could be used for improving other properties of enzymes. In this study, by using P. pastoris as a host to build mutant pool, we succeeded in obtaining a thermostable variant S4-3 without compromising enzyme activity and making it a highly promising candidate for future applications at high temperatures.  相似文献   

16.
Milestones in directed enzyme evolution   总被引:4,自引:0,他引:4  
Directed evolution has now been used for over two decades as an alternative to rational design for protein engineering. Protein function, however, is complex, and modifying enzyme activity is a tall order. We can now improve existing enzyme activity, change enzyme selectivity and evolve function de novo using directed evolution. Although directed evolution is now used routinely to improve existing enzyme activity, there are still only a handful of examples where substrate selectivity has been modified sufficiently for practical application, and the de novo evolution of function largely eludes us.  相似文献   

17.
Directed evolution of enzyme stability   总被引:7,自引:0,他引:7  
Modern enzyme development relies to an increasing extent on strategies based on diversity generation followed by screening for variants with optimised properties. In principle, these directed evolution strategies might be used for optimising any enzyme property, which can be screened for in an economically feasible way, even if the molecular basis of that property is not known. Stability is an interesting property of enzymes because (1) it is of great industrial importance, (2) it is relatively easy to screen for, and (3) the molecular basis of stability relates closely to contemporary issues in protein science such as the protein folding problem and protein folding diseases. Thus, engineering enzyme stability is of both commercial and scientific interest. Here, we review how directed evolution has contributed to the development of stable enzymes and to new insight into the principles of protein stability. Several recent examples are described. These examples show that directed evolution is an effective strategy to obtain stable enzymes, especially when used in combination with rational or semi-rational engineering strategies. With respect to the principles of protein stability, some important lessons to learn from recent efforts in directed evolution are (1) that there are many structural ways to stabilize a protein, which are not always easy to rationalize, (2) that proteins may very well be stabilized by optimizing their surfaces, and (3) that high thermal stability may be obtained without forfeiture of catalytic performance at low temperatures.  相似文献   

18.
Many research groups successfully rely on whole-gene random mutagenesis and recombination approaches for the directed evolution of enzymes. Recent advances in enzyme engineering have used a combination of these random methods of directed evolution with elements of rational enzyme modification to successfully by-pass certain limitations of both directed evolution and rational design. Semi-rational approaches that target multiple, specific residues to mutate on the basis of prior structural or functional knowledge create 'smart' libraries that are more likely to yield positive results. Efficient sampling of mutations likely to affect enzyme function has been conducted both experimentally and, on a much greater scale, computationally, with remarkable improvements in substrate selectivity and specificity and in the de novo design of enzyme activities within scaffolds of known structure.  相似文献   

19.
De novo design of biocatalysts   总被引:6,自引:0,他引:6  
The challenging field of de novo enzyme design is beginning to produce exciting results. The application of powerful computational methods to functional protein design has recently succeeded at engineering target activities. In addition, efforts in directed evolution continue to expand the transformations that can be accomplished by existing enzymes. The engineering of completely novel catalytic activity requires traversing inactive sequence space in a fitness landscape, a feat that is better suited to computational design. Optimizing activity, which can include subtle alterations in backbone conformation and protein motion, is better suited to directed evolution, which is highly effective at scaling fitness landscapes towards maxima. Improved rational design efforts coupled with directed evolution should dramatically improve the scope of de novo enzyme design.  相似文献   

20.
Referee: Dr. Ruth Nussinov, Saic Frederick, Bldg. 469. 469, Room 151, Frederick, MD 21702-1201

Hyperthermophilic organisms optimally grow close to the boiling point of water. As a consequence, their macromolecules must be much more thermostable than those from mesophilic species. Here, proteins from hyperthermophiles and mesophiles are compared with respect to their thermodynamic and kinetic stabilities. The known differences in amino acid sequences and three-dimensional structures between intrinsically thermostable and thermolabile proteins will be summarized, and the crucial role of electrostatic interactions for protein stability at high temperatures will be highlighted. Successful attempts to increase the thermostability of proteins, which were either based on rational design or on directed evolution, are presented. The relationship between high thermo-stability of enzymes from hyperthermophiles and their low catalytic activity at room temperature is discussed. Not all proteins from hyperthermophiles are thermostable enough to retain their structures and functions at the high physiological temperatures. It will be shown how this shortcoming can be surpassed by extrinsic factors such as large molecular chaperones and small compatible solutes. Finally, the potential of thermostable enzymes for biotechnology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号