首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

2.
Phosphofructokinase 2 and fructose 2,6-bisphosphatase extracted from either chicken liver or pigeon muscle co-purified up to homogeneity. The two homogeneous proteins were found to be dimers of relative molecular mass (Mr) close to 110,000 with subunits of Mr 54,000 for the chicken liver enzyme and 53,000 for the pigeon muscle enzyme. The latter also contained a minor constituent of Mr 54,000. Incubation of the chicken liver enzyme with the catalytic subunit of cyclic-AMP-dependent protein kinase in the presence of [gamma-32P]ATP resulted in the incorporation of about 0.8 mol phosphate/mol enzyme. Under similar conditions, the pigeon muscle enzyme was phosphorylated to an extent of only 0.05 mol phosphate/mol enzyme and all the incorporated phosphate was found in the minor 54,000-Mr constituent. The maximal activity of the native avian liver phosphofructokinase 2 was little affected by changes of pH between 6 and 10. Its phosphorylation by cyclic-AMP-dependent protein kinase resulted in a more than 90% inactivation at pH values below 7.5 and in no or little change in activity at pH 10. Intermediary values of inactivation were observed at pH values between 8 and 10. Muscle phosphofructokinase 2 had little activity at pH below 7 and was maximally active at pH 10. Its partial phosphorylation resulted in a further 25% decrease of its already low activity measured at pH 7.1 and in a negligible inactivation at pH 8.5. Phosphoenolpyruvate and citrate inhibited phosphofructokinase 2 from both origins non-competitively. The muscle enzyme and the phosphorylated liver enzyme displayed much more affinity for these inhibitors than the native liver enzyme. Fructose 2,6-bisphosphatase from both sources had about the same specific activity but only the chicken liver enzyme was activated about twofold upon incubation with ATP and cyclic-AMP-dependent protein kinase. All enzyme forms were inhibited by fructose 6-phosphate and this inhibition was released by inorganic phosphate and by glycerol 3-phosphate. Both liver and muscle fructose 2,6-bisphosphatases formed a 32P-labeled enzyme intermediate when incubated in the presence of fructose 2,6-[2-32P]bisphosphate.  相似文献   

3.
1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies.  相似文献   

4.
These studies provide information about the mechanism of the light/dark-mediated regulation of pyruvate, Pi dikinase (EC 2.7.9.1) in leaves. It is shown that inactivation is due to a phosphorylation of the enzyme from the beta-phosphate of ADP, and that activation occurs by phosphorolysis to remove the enzyme phosphate group. During ADP plus ATP-dependent inactivation of pyruvate, Pi dikinase in chloroplast extracts, 32P was incorporated into the enzyme from [beta-32P]ADP. Approximately 1 mol of phosphate was incorporated per mol of monomeric enzyme subunit inactivated. There was very little incorporation of label from ADP or ATP labeled variously in other positions with 32P or from the nucleotides labeled with 3H in the purine ring. Purified pyruvate, Pi dikinase was also labeled from [beta-32P]ADP during inactivation. In this system, phosphorylation of the enzyme required the addition of the "regulatory protein" shown previously to be essential for catalyzing inactivation and activation. During orthophosphate-dependent reactivation of pyruvate, Pi dikinase, it was shown that the enzyme loses 32P label and that pyrophosphate is produced. The significance of these findings in relation to regulation of the enzyme in vivo is discussed.  相似文献   

5.
That red muscle pyruvate kinase from anoxic Busycotypus canaliculatum (PK-anoxic) is a phosphoprotein was demonstrated by the anoxia-dependent, in vivo, covalent incorporation of injected [32P]orthophosphate into the enzyme molecule. Specificity in labelling of PK-anoxic was strongly suggested by: (a) coincidental elution of pyruvate kinase activity and radioactivity following chromatography of purified PK-anoxic on Sepharose CL-6B, and (b) comigration of the area containing [32P]phosphate and Coomassie-Blue-staining protein following SDS-polyacrylamide gel electrophoresis of homogenous PK-anoxic. The [32P]phosphate content of the enzyme was calculated to be 7.3 mol phosphate/mol enzyme (233 kDa, 180 units/mg protein). Evidence for the reversibility of this phosphorylation was provided by the consistent kinetic similarities between purified red muscle pyruvate kinase from aerobic animals (PK-aerobic) and homogenous, unlabelled, alkaline phosphatase treated PK-anoxic. Comparison of the electrophoretic mobilities of products derived from acid hydrolysis of purified 32P-labelled PK-anoxic with authentic substances suggest the presence of an O-phospho-L-threonine residue in the protein. That this residue plays a probable role in an interconversion mechanism was suggested by the lack of phosphate exchange of homogenous 32P-labelled PK-anoxic in the presence of all substrates. A possible role of protein phosphorylation as a mechanism for the overall control of molluscan anaerobic metabolism is suggested.  相似文献   

6.
1. Phosphoglucomutase from Micrococcus lysodeikticus was incubated with (14)C- and (32)P-labelled glucose 1,6-diphosphate and separated from the cofactor on a Sephadex column. (32)P-labelled phosphate (0.7mol/mol of enzyme) was associated with the enzyme, but no (14)C label was. 2. The (32)P-labelled enzyme exchanged its label with the substrates. When the labelled enzyme was incubated in Tris buffer, pH8.3, at 30 degrees C the proportion of exchangeable label slowly fell indicating a half-life of the phosphoenzyme of about 50h. 3. When HClO(4) was added to the labelled phosphoenzyme all of the label was precipitated with the protein and none was released as P(i). On alkaline hydrolysis P(i) was released at a rate comparable with the rate of hydrolysis of the phosphoenzyme from rabbit muscle. 4. We conclude that the phosphoenzyme from Micrococcus lysodeikticus yields a relatively stable, catalytically active phosphoenzyme when treated with cofactor, and that there is no evidence for the formation of an enzyme-glucose 1,6-diphosphate complex. The properties of the phosphoenzyme, which resemble those of rabbit muscle phosphoglucomutase, suggest that the phosphate may be bound to serine.  相似文献   

7.
The effects of insulin and epinephrine on the phosphorylation of glycogen synthase were investigated using rat hemidiaphragms incubated with [32P]phosphate. Antibodies against rabbit skeletal muscle glycogen synthase were used for the rapid purification of the 32P-labeled enzyme under conditions that prevented changes in its state of phosphorylation. The purified material migrated as a single radioactive species (Mapp = 90,000) when subjected to electrophoresis in sodium dodecyl sulfate. Insulin decreased the [32P]phosphate content of glycogen synthase. This effect occurred rapidly (within 15 min) and was observed with physiological concentrations of insulin (25 microunits/ml). The amount of [32P]phosphate removed from glycogen synthase by either different concentrations of insulin or times of incubation with the hormone was well correlated to the extent to which the enzyme was activated. Epinephrine (10 microM) inactivated glycogen synthase and increased its content of [32P]phosphate by about 50%. Cleavage of the immunoprecipitated enzyme with cyanogen bromide yielded two major 32P-labeled fragments of apparent molecular weights equal to approximately 28,000 and 15,000. The larger fragment (Fragment II) displayed electrophoretic heterogeneity similar to that observed with the corresponding CNBr fragment (CB-2) from purified rabbit skeletal muscle glycogen synthase phosphorylated by different protein kinases. Epinephrine increased [32P]phosphate content of both fragments; however, the increase in the radioactivity of the smaller fragment (Fragment I) was more pronounced. Insulin decreased the amount of [32P] phosphate present in Fragments I and II by about 40%. The results presented provide direct evidence that both insulin and epinephrine control glycogen synthase activity by regulating the phosphate present at multiple sites on the enzyme.  相似文献   

8.
Phenylalanine is transported rapidly into, but is not concentrated by, liver cells. Glucagon increased flux through phenylalanine hydroxylase; a half-maximal response was obtained at 0.7 nM. Under control conditions, 0.2-0.3 mol of phosphate were incorporated per mol of subunit of the hydroxylase at steady state. Glucagon increased this incorporation of phosphate into the hydroxylase to a maximal value of approx. 0.6 mol of phosphate per subunit; a half-maximal response was obtained at 0.3 nM. Glucagon, added simultaneously with [32P]Pi to liver cells, inhibited incorporation of 32P into the enzyme. The effects of glucagon were reproduced with dibutyryl cyclic AMP. Changes in phosphorylation correlated closely with changes in flux through phenylalanine hydroxylase in cell incubations.  相似文献   

9.
Human platelets, prelabeled with [32P]phosphate were treated with tetradecanoylphorbol acetate (TPA) for 5 min at 37 degrees C. Phosphorylation of the components of adenylyl cyclase was determined in membranes using specific antibodies against G-proteins and the catalytic moiety. Less than 0.01 mol of [32P]phosphate/mol could be detected in immunoprecipitates using antibodies against sequences within the alpha-subunit of the GTP binding protein Gi. TPA, however, caused the incorporation of 0.67-1.1 mol of [32P]phosphate per mol of catalyst while 0.13-0.2 mol were found in the absence of TPA. Lack of modification of the alpha-subunit of Gi was also indicated by the results of reconstitution experiments with purified Gi alpha from bovine brain: adenylyl cyclase in membranes from untreated platelets was significantly more inhibited by added G1 alpha, than that from TPA treated cells. While beta, gamma-subunits were like-wise inhibitory no difference dependent on platelet-pretreatment could be observed.  相似文献   

10.
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶的酶学性质   总被引:1,自引:0,他引:1  
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSP合酶)是AROM多功能酶的活性之一.该酶催化莽草酸磷酸(S3P)和磷酸烯醇式丙酮酸(PEP)产生5-烯醇丙酮酰莽草酸-3-磷酸和无机磷酸的可逆反应,受除草剂草甘膦(N-(膦羧甲基)甘氨酸)抑制.纯化了核盘菌AROM蛋白并对EPSP合酶进行了酶学特征研究.结果显示,该酶反应的最适pH值为7.2,最适温度为30℃.热失活反应活化能是69.62 kJ/mol.底物S3P和PEP浓度分别高于1 mmol/L和2 mmol/L时,对EPSP合酶反应产生抑制作用.用双底物反应恒态动力学Dalziel方程求得的Km(PEP)为140.98 μmol/L,K m(S3P)为139.58 μmol/L.酶动力学模型遵循顺序反应机制.草甘膦是该酶反应底物PEP的竞争性抑制剂(Ki为0.32 μmol/L)和S3P的非竞争性抑制剂.正向反应受K+激活.当[K+]增加时,K m(PEP)随之降低,Km(S3P)不规律变化,而K i(PEP)随[K+]增加而提高.  相似文献   

11.
Glucokinase, purified from rat liver, was phosphorylated to an extent of 1 mol [32P]-phosphate/mol of enzyme when incubated with [32P]ATP and protein kinase A from pig or rabbit muscle. The phosphate was bound to serine residues. K0.5 increased and Vmax decreased upon phosphorylation. The phosphate group was removed during incubation of the phosphorylated glucokinase with alkaline phosphatase. Enzymatically inactive glucokinase was not phosphorylated by the protein kinase.  相似文献   

12.
Ribosomes prepared from murine lymphosarcoma cells were phosphorylated by a cyclic AMP-independent protein kinase designated H4P kinase. H4P kinase was isolated as an inactive enzyme which was activated by Mg2+-ATP and an endogenous converting enzyme. In the absence of preactivation by Mg2+-ATP and an endogenous converting enzyme, H4P kinase catalyzed phosphorylation of 80, 60, and 40 S ribosomal subunits at a low rate. After activation, the H4P kinase selectively catalyzed phosphorylation of the S 6 protein in the 40 S ribosomal subunit. Under the assay conditions selected, at least 90% of the [32P]phosphate transferred to the 40 S ribosomal preparation was incorporated into S 6. The apparent Km for 40 S subunits phosphorylated by H4P kinase was 7.2 microM. The calculated Vmax was 50 nmol of Pi transferred per min/mg. Exhaustive phosphorylation of 40 S subunits resulted in incorporation of 3 mol of phosphate/mol of S 6, in contrast to results reported previously which indicated 0.3 mol of phosphate was transferred by a similar enzyme from reticulocyte (Del Grande, R. W., and Traugh, J. A. (1982) Eur. J. Biochem. 123, 421-428). These data are consistent with a potential role for H4P kinase in the insulin-mediated phosphorylation of S 6 at multiple sites.  相似文献   

13.
The potential correlations between phosphorylase kinase subunit phosphorylation and activation have been examined using 32P-perfused rat hearts exposed to a variety of hormonal stimuli. Phosphate incorporation was measured after isolation of the enzyme by immunoprecipitation from heart extracts. Time courses of catecholamine or glucagon treatment produced a rapid rise in both the activity and the beta subunit phosphorylation of the enzyme, and a slightly slower increase in alpha' subunit phosphorylation. For short durations of catecholamine stimulation, the ratio of phosphate in the alpha' versus beta subunit was dependent upon hormone dose. After removal of hormone, both inactivation and alpha' subunit dephosphorylation were fairly slow, while the beta subunit was dephosphorylated more rapidly. For all of the above conditions, activation correlated with both alpha' and beta subunit phosphorylation. The maximum level of phosphate incorporation observed in response to hormonal stimulation is estimated to be approximately 1.3-1.7 mol of [32P]phosphate/mol of (alpha' beta gamma delta)4, divided about equally between the alpha' and beta subunits. When hearts were treated with hormone either in the absence of added calcium or in the presence of a calcium channel blocker, the time courses of subunit phosphorylation and activation were similar to those seen with standard perfusion conditions, suggesting that if any Ca2+-dependent autophosphorylation of phosphorylase kinase were occurring it does not make a major contribution to the observed hormonal responses. The complicated relationships observed here between phosphorylase kinase subunit phosphorylation and activation for the most part provide physiological affirmation of the patterns observed in vitro, but they also show some possible differences of potential interest.  相似文献   

14.
Pieces of rat epididymal adipose tissue were incubated in medium containing [32P]phosphate for 2 h to achieve steady-state labelling of intracellular phosphoproteins and then with or without hormones for a further 15 min. Phosphofructokinase was rapidly isolated from the tissue by use of either Blue Dextran-Sepharose chromatography or immunoprecipitation with antisera raised against phosphofructokinase purified from rat interscapular brown adipose tissue. Similar extents of incorporation of 32P into phosphofructokinase were measured by both techniques. Exposure of the tissue to adrenaline or the beta-agonist isoprenaline increased phosphorylation by about 5-fold (to about 1.4 mol of phosphate/mol of enzyme tetramer). No change in phosphorylation was detected with the alpha-agonist phenylephrine, but exposure to insulin resulted in an approx. 2-fold increase. The increased phosphorylation observed with isoprenaline was found to be associated with a decrease in the apparent Ka for fructose 2,6-bisphosphate similar to that observed on phosphorylation of phosphofructokinase purified from rat epididymal white adipose tissue with the catalytic subunit of cyclic AMP-dependent protein kinase. These results support the view [Sale & Denton (1985) Biochem. J. 232, 897-904] that an increase in cyclic AMP in adipose tissue may result in an increase in glycolysis through the phosphorylation of phosphofructokinase by cyclic AMP-dependent protein kinase.  相似文献   

15.
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue.  相似文献   

16.
K(+)-contracted porcine carotid arterial muscles containing phosphorylated 20-kDa myosin light chains (LC) were exposed to carrier-free [32P]orthophosphate in K(+)-stimulating solution during sustained contraction. The covalently bound LC phosphate was completely replaced by [32P]phosphate, indicating that myosin light chain phosphatase and kinase have ready access to the bound phosphate during the sustained contraction. On average, 0.38 mol [32P]phosphate was incorporated per mole LC during the sustained K+ contraction. This value was about half of the maximal value for [32P]phosphate incorporation into LC, 0.74 mol/mol, in muscles contracted with K+ for 1 min. Assuming that sustained contraction involves the maximal number of cross-bridges attached to actin, the data suggest that half of the attached cross-bridges contain phosphorylated LC.  相似文献   

17.
Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively.  相似文献   

18.
A recombinant protein-tyrosine-phosphatase has been expressed in Escherichia coli and purified to a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using affinity chromatography. When the phosphatase was allowed to react with 32P-labeled substrates and then rapidly denaturated, a 32P-labeled phosphoprotein could be visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Transient formation of a 32P-labeled phosphoprotein was observed, and the 32P-labeled protein disappeared as substrate was consumed. In the presence of 32P-labeled p-nitrophenyl phosphate, 0.27 mol of phosphate was incorporated per mol of protein-tyrosine-phosphatase. Site-directed mutagenesis of a catalytically essential cystine residue (position 215) in the recombinant protein resulted in an inactive enzyme, and no phosphoprotein was formed. The 32P-labeled phosphoprotein showed a maximum lability between pH 2.5 and 3.5 and was rapidly decomposed in the presence of iodine. These properties, along with additional site-directed mutations, suggest that the protein-tyrosine-phosphatase forms a covalent thiol phosphate linkage between Cys215 and phosphate.  相似文献   

19.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

20.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号