首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Monument Creek, a second-order Alaskan subarctic stream, experiences a severe thermal regime, with water temperatures of 0°C for six months. Leaching, long-term decomposition and macroinvertebrate colonization of 5 g leaf packs were studied using leaves of the major riparian tree species, alder Alnus tenuifolia Nutt., birch Betula papyrifera Marsh. and willow Salix alaxensis (Anderss.) Cov. subsp. alaxensis and Salix arbucolides Anders. var. glabra Anderss. The processing rates of birch (k = 0.0080) and willow (k = 0.0063) were moderate while alder was processed very rapidly (k = 0.0513). Leaching rates did not differ significantly among the three leaf species, and accounted for 10–15% of total weight loss. Densities and biovolume of colonizing insects increased from fall to winter. Shredders dominated insect biovolume by midwinter, but were a small fraction of total biovolume in leaf packs that had frozen over winter and were sampled following spring thaw. This may be a function of low food quality in spring and/or the timing of shredder life histories. Limited allochthonous input and constriction of the stream channel due to freezing, with resultant high shredder densities, may explain the relatively rapid detritus processing rates in Monument Creek, despite cold stream temperatures.  相似文献   

2.
1. Macroinvertebrate communities were studied from 1994 to 2001/2002 (except 1997) in six streams in Denali National Park, interior Alaska. All six streams were potential reference streams with no known impairment. 2. Abundance of individual taxa varied markedly from year to year. Overall, abundance decreased over the study period, particularly with respect to mayflies. Stonefly taxa showed lower persistence and were sometimes absent from a stream in any particular year. 3. Mean community persistence for the six streams, as measured by Jaccard's similarity coefficients between years, varied from 0.48 in the year pair 1999–2000 to 0.78 in 1998–99. Tattler Creek (a small stable stream) supported the most persistent macroinvertebrate community and Highway Pass Creek (a small, unstable creek) the least. Mean community persistence showed a significant relationship with mean winter snowfall (November to March) for the six streams. 4. The highest community compositional stability was found in Tattler Creek and the lowest in Highway Pass Creek, but stability varied markedly over time for the six streams, peaking in 1994–95 and reaching a minimum in 2000–01. Compositional stability was significantly related to the Pfankuch Index of channel stability. 5. The composition metrics % Chironomidae, % dominant taxa, %EPT, % Ephemeroptera and % Plecoptera, employed as part of the Alaska Stream Condition Index, varied over almost their entire range in these pristine streams across the 9 years of the study. 6. This study demonstrates the wide range of natural variation that occurs in benthic macroinvertebrate communities in these pristine central Alaskan streams, potentially limiting the applicability of composition metrics for the biological monitoring of water quality in these systems.  相似文献   

3.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

4.
Taxonomic composition of benthic invertebrates in interior Alaskan streams and rivers is summarized from published and unpublished data. Diptera dominate the Alaskan stream fauna and constitute a larger proportion of the benthos in Alaskan streams than in streams of temperate North America. Plecoptera and Ephemeroptera are the next most abundant in Alaskan streams with Trichoptera generally very scarce. Several orders that occur regularly in streams of temperate North America are absent (or in very low abundance) in interior Alaskan streams: Hemiptera, Odonata, Megaloptera, Coleoptera. Net-spinning caddisflies, burrowing mayflies, and several families of stoneflies (Pteronarcyidae, Peltoperlidae and Perlidae) are conspicuous by their absence or extreme scarcity. Taxonomic composition varies significantly among hydrologic regions (major watersheds) and among stream types (springs, headwater streams, small rivers, and large rivers). Only two taxa (Chironomidae and Nemouridae) significantly increase in proportional contribution from south to north while many taxa decrease.  相似文献   

5.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

6.
1. We examined the spatial and temporal dynamics of pink salmon ( Oncorhynchus gorbuscha ) carcass decomposition (mass loss and macroinvertebrate colonisation) in south-eastern Alaskan streams. Dry mass and macroinvertebrate fauna of carcasses placed in streams were measured every two weeks over two months in six artificial streams and once after six weeks in four natural streams. We also surveyed the macroinvertebrate fauna and wet mass of naturally occurring salmon carcasses.
2. Carcass mass loss in artificial streams was initially rapid and then declined over time ( k =–0.033 day–1), and no significant differences were found among natural streams.
3. Several macroinvertebrate taxa colonised carcasses, but chironomid midge (Diptera: Chironomidae) and Zapada (Plecoptera: Nemouridae) larvae were found consistently and were the most abundant (on average 95 and 2%, respectively, of the invertebrates found). Chironomid abundance and biomass increased over time, whereas Zapada abundance and biomass did not. Significant differences in abundance were found among natural streams for Baetis (Ephemeroptera: Baetidae) and Sweltsa (Plecoptera: Chloroperlidae) larvae, while no significant differences were found for chironomid and Zapada abundance or biomass.
4. Our results suggest that salmon carcasses initially undergo a high rate of mass loss that tapers off with time. Chironomid and Zapada larvae are likely to be important in mediating nutrient and energy transfer between salmon carcasses and other components of the freshwater-riparian food web in south-eastern Alaskan streams.  相似文献   

7.
Summary The role of predator density and plant detritus in determining patterns of insect abundance was tested in an Appalachian stream community (Reeds Creek, Pendleton Co, West Virginia). Insect colonization was followed over a 21-day period in field enclosures containing different densities of sculpins (Cottus bairdi and Cottus girardi). Sculpins caused no significant reductions in prey abundance; however, the combined effect of a guild of vertebrate predators caused a significant depression in the abundance of Chironomidae and the stonefly Leuctra. Since Chironomidae comprised approximately 85% of the total benthic fauna, vertebrate predation had an important role in the overall structure of the invertebrate community.Total insect abundance and diversity were correlated to the presence of plant detritus. However, this relationship was taxon specific, as abundance was highly correlated to detritus for only selected insect taxa. In general, abundance was best correlated with coarse particulate organic matter (CPOM), compared to fine particulate organic matter (FPOM) or total detritus (FPOM+CPOM+Whole leaf organic matter (LVOM)).This experiment illustrates that the influence of various potential structuring mechanisms is highly taxon dependent.  相似文献   

8.
Information on the ecology of New Guinea streams is meagre, and data are needed on the trophic basis of aquatic production in rivers such as the Sepik in Papua New Guinea which have low fish yields. This study investigates the relationship between riparian shading (from savanna grassland to primary rainforest), algal and detrital food, and macroinvertebrate abundance and community structure in 6 Sepik River tributary streams. A particular aim was to elucidate macroinvertebrate community responses to changes in riparian conditions. All streams supported diverse benthic communities, but morphospecies richness (overall total 64) was less than in streams on the tropical Asian mainland; population densities of benthic invertebrates, by contrast, were similar to those recorded elsewhere. Low diversity could reflect limited taxonomic penetration, but may result from the absence of major groups (Plecoptera, Heptageniidae, Ephemerellidae, Psephenidae, Megaloptera, etc.) which occur on the Asian mainland. Population densities of all 19 of the most abundant macroinvertebrate taxa varied significantly among the 6 study streams, but community composition in each was broadly similar with dominance by Baetidae and (in order of decreasing importance), Leptophlebiidae, Orthocladiinae, Elmidae and Hydropsychidae. Principal components analysis (PCA) undertaken on counts of abundant macroinvertebrate taxa clearly separated samples taken in two streams from the rest. Both streams contained high detrital standing stocks and one was completely shaded by rainforest. Stepwise multiple-regression analysis indicated that population densities of the majority of abundant taxa (11 out of 19) across streams (10 samples per stream; n = 60) were influenced by algae and/or detritus, although standing stocks of these variables were not clearly related to riparian conditions. When regression analysis was repeated on mean counts of taxa per stream (dependent variables) versus features of each stream as a whole (thus n = 6), % shading and detritus were the independent variables yielding significant regression models most frequently, but pH, total-nitrogen loads and algae were also significant predictors of faunal abundance. Further regression analysis, undertaken separately on samples (n = 10) from each stream, confirmed the ability of algae and detritus to account for significant portions of the variance in macroinvertebrate abundance, but the significance of these variables varied among streams with the consequence that responses of individual taxa to algae or detritus was site-specific.Community functional organization — revealed by investigation of macroinvertebrate functional feeding groups (FFGs) — was rather conservative, and streams were codominated by collector-gatherers (mean across 6 streams = 43%) and grazers (36%), followed by filter-feeders (15%) and predators (7%). The shredder FFG was species-poor and comprised only 0.4% of total macroinvertebrate populations; shredders did not exceed 2% of benthic populations in any stream. PCA of FFG abundance data was characterized by poor separation among streams, although there was some evidence of clustering of samples from unshaded sites. The first 2 PCA axes accounted for 84% of the variation in the data suggesting that the poor separation resulted from the general similarity of FFG representation among streams. Although stepwise multiple-regression analysis indicated that algae and detritus accounted for significant proportions of the variations in population density and relative abundance of some FFGs, the response of community functional organization to changes in riparian conditions and algal and detrital food base was weak — unlike the deterministic responses that may be typical of north-temperate streams.  相似文献   

9.
We investigated the thermal ecology of three Alaskan streams. Monument Creek (MC) and Little Poker Creek (LPC) are subarctic streams in interior Alaska; LPC is in a permafrost-dominated valley. Imnavait Creek (IC) is an arctic tundra beaded stream in the northern foothills of the Brooks Range. Water temperatures were recorded with automated dataloggers hourly (LPC) or bi-hourly (MC and IC). Records for MC extend through almost three entire years, while data from IC (three years) and LPC (one year) represent the majority of the ice-free season. We also collected winter water/ice temperatures from IC (1989–1990). Mean annual water temperatures were 1.1 °C (LPC), 2.3 °C (MC), and 2.9 °C (IC), while maxima were 5.8 °C (LPC), 13.0 °C (MC), and 21.4 °C (IC). Water temperature rose in the spring about twice as fast (both mean and maximum daily increase) in MC as in LPC, and again about twice as fast in IC as in MC. A similar pattern was observed during the autumnal decline in water temperature. Maximum daily amplitude followed a similar pattern, with MC (6.6 °C) intermediate between LPC (4.1°) and IC (11.6°). LPC accumulated approximately 400 degree-days above 0 °C, MC approximately 950 degree-days, and IC approximately 1000 degree-days. Although it is about 450 km north of the other streams, the tundra stream (IC) accumulated more degree-days, had higher maximum and mean temperatures, greater daily temperature amplitude, and steeper slopes of vernal temperature rise and autumnal temperature decline than the subarctic streams (LPC and MC). The absence of a canopy of riparian plants, channel morphology, and continuous sunlight during the arctic mid-summer accounted for these higher temperatures. Beaded tundra streams provide a highly seasonal (< 120 d ice-free) and spatially and temporally complex thermal environment.  相似文献   

10.
Stream detritus dynamics: Regulation by invertebrate consumers   总被引:12,自引:0,他引:12  
Summary Insecticide treatment of a small, Appalachian forest stream caused massive downstream insect drift and reduced aquatic insect densities to <10% of an adjacent untreated reference stream. Reduction in breakdown rates of leaf detritus was accompanied by differences in quantity and composition of benthic organic matter between the two streams. Following treatment, transport of particulate organic matter was significantly lower in the treated stream than in the reference stream whereas no significant differences existed prior to treatment. Our results indicate that macroinvertebrate consumers, primarily insects, are important in regulating rates of detritus processing and availability to downstream communities.  相似文献   

11.
Temporal coherence or spatial synchrony refers to the tendency of population, community or ecosystem dynamics to behave similarly among locations through time as a result of spatially‐correlated environmental stochasticity (Moran effect), dispersal or trophic interactions. While terrestrial studies have treated synchrony mainly as a population‐level concept, the majority of freshwater studies have focused on community‐level patterns, particularly in lake planktonic communities. We used spatially and temporally hierarchical data on benthic stream invertebrates across six years, with three seasonal samples a year, in 11 boreal streams to assess temporal coherence at three spatial extents: 1) among regions (watersheds), 2) among streams within a region, and 3) among riffles within a stream, using the average of correlation coefficients for stream/riffle pairs across years. Our results revealed the primacy of strongly synchronized climatic factors (precipitation, air temperature) in inducing temporal coherence of macroinvertebrate assemblages across geographically distinct sites (i.e. Moran effect). Coherence tended to decrease with increasing spatial extent, but positive coherence was detected for most biological variables even at the largest extent (about 350 km). The generally high level of coherence reflected the strong seasonality of boreal freshwater communities. A hydrologically exceptional year enhanced the synchrony of biological variables, particularly total macroinvertebrate abundance. Regionally low precipitation in that year led to a substantial decrease in benthic densities across a broad spatial extent, followed by a rapid post‐drought recovery. Coherence at the among‐riffle (within‐stream) extent was lower than expected, implying that local‐scale habitat filters determine community dynamics at smaller spatial extents. Thus, temporal coherence of stream benthic communities appears to be controlled by partly different processes at different spatial scales.  相似文献   

12.
Climate change leads to summer low flow conditions and premature litter input in lowland streams in Central Europe. This may cause a sudden reduction of flow and fragmentation into isolated pools of permanently flowing streams, with a simultaneous increase in the food supply for detrivores during summer months. We performed a mesocosm study to investigate shredder and microbial mediated litter decomposition under these conditions. Leaf litter was placed in a lowland stream with a natural flow regime (reference) and in a stream mesocosm with significant flow reduction (FR) and a representative density of macroinvertebrates and detritus. Physicochemical parameters, leaf mass loss, macroinvertebrate abundance and biomass, leaf-associated respiration, fungal sporulation, and biomass were measured at regular intervals for 6 weeks. Coarse and fine-mesh bags were used to include or exclude macroinvertebrate shredders. In the coarse-mesh bags, leaf mass loss was significantly lower in the FR system than in the reference regime. In the fine-mesh bags, leaf respiration, fungal sporulation, and biomass but not leaf mass losses were substantially lower with flow reduction. Chironomid larvae (Micropsectra spp.) appeared to effectively fragment leaf litter in fine-mesh bags. In the FR system, leaf respiration was higher in the coarse-than in the fine-mesh bags. Our results suggest that, in temperate lowland streams, premature litter input during or after a sudden fragmentation into isolated pools and a reduction of stream flow reduces direct shredder-mediated litter decomposition, but shredders may indirectly influence the decomposition process. Handling editor: B. Oertli  相似文献   

13.
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.  相似文献   

14.
B. Khan  M. H. Colbo 《Hydrobiologia》2008,600(1):229-235
This study examined the impact of physical disturbance from long-established road culverts on stream macroinvertebrate communities. Three streams within a 6 km section of highway on the Avalon Peninsula, Newfoundland, Canada, were sampled. Streams had the entire upstream watershed and at least 100 m downstream of the road with natural boreal forest/barren vegetation and all had, within the sampled reaches, similar physical streambed characteristics. The fauna on stones from riffles was sampled at two upstream and three downstream sites, i.e., from 50 m above to about 100 m below the road in each stream. A total of 33 taxa were identified among the streams, with differences limited to a few rare taxa. The sample site communities did not significantly differ from each other with respect to the taxa present. Total macroinvertebrate abundance by site, for combined data of all streams, indicated the site at the exit of culvert plunge pool (site 3) had significantly elevated abundances. Analysis of individual taxa showed this was primarily due to very high numbers of Simulium spp. The other most notable changes were a decrease in numbers of Hydropsyche spp. and Elmidae below the road. The abundances of the remaining taxa were more variable among all sites. The study indicated that long-standing point source physical disturbance primarily impacted taxa abundance rather than community present/absent data, which will recolonize the disturbed zone by downstream drift. The differences in abundance are probably the result of the cleaning of substrate by abrasion, movement of substrate and reduction of detritus during each spate. Handling editor: D. Dudgeon  相似文献   

15.
Fuller  Randall L.  Kennedy  Brian P.  Nielsen  Carl 《Hydrobiologia》2004,523(1-3):113-126
Our study was designed to assess the relative importance of algae and bacteria as sources of energy for stream macroinvertebrates. In one experiment, we manipulated algae by artificially shading six sections in each of two streams, one stream with an open canopy (clear-cut drainage basin) and the other with a closed canopy (forested drainage basin); both streams were in Hubbard Brook Experimental Forest, New Hampshire, USA. Chlorophyll a concentrations were reduced from 0.2 to 0.05 μg/cm2 in artificially shaded sections of both streams. However, macroinvertebrates showed no response to these algal manipulations in either the clear-cut or forested stream. Nutrient concentrations (N and P) were low and limiting to primary production in both the clear-cut and forested streams. Additionally, both streams had relatively low macroinvertebrate densities suggesting bottom-up controls were important in macroinvertebrate abundance. However, the forested stream did have higher macroinvertebrate densities presumably because of higher inputs of coarse particulate organic matter from the riparian vegetation. In a second experiment, in Augusta Creek, Michigan, we manipulated both algae and bacteria. To reduce algae, we artificially shaded experimental stream channels so that chlorophyll a was reduced from natural levels of 3.0–5.6 to 0.4–0.7 μg/cm2. Half of the shaded channels had dissolved organic carbon (DOC – sucrose) dripped into them to raise DOC levels by 2–3 mg/l and thus stimulate bacterial abundance. Open channels, with higher algal abundance, had higher densities of Ephemerella, but only in November when nymphs were larger. Channels with increased DOC had higher bacterial abundances, higher densities of Chironomidae and lower densities of Heptageniidae. Several other macroinvertebrate taxa that were at relatively low abundance in our samples showed no significant response to these manipulations. Our results suggest that early instar Ephemerella may not rely as heavily on algae as later instars. Also, certain taxa were able to use the heterotrophic microbial community, especially chironomids which increased in numbers when bacterial density increased; thus, the bacterial carbon source may be more important to some stream macroinvertebrates than previous studies have suggested.  相似文献   

16.
1. Many natural ecosystems are heterogeneous at scales ranging from microhabitats to landscapes. Running waters are no exception in this regard, and their environmental heterogeneity is reflected in the distribution and abundance of stream organisms across multiple spatial scales. 2. We studied patchiness in benthic macroinvertebrate abundance and functional feeding group (FFG) composition at three spatial scales in a boreal river system. Our sampling design incorporated a set of fully nested scales, with three tributaries, two stream sections (orders) within each tributary, three riffles within each section and ten benthic samples in each riffle. 3. According to nested anova s, most of the variation in total macroinvertebrate abundance, abundances of FFGs, and number of taxa was accounted for by the among‐riffle and among‐sample scales. Such small‐scale variability reflected similar patterns of variation in in‐stream variables (moss cover, particle size, current velocity and depth). Scraper abundance, however, varied most at the scale of stream sections, probably mirroring variation in canopy cover. 4. Tributaries and stream sections within tributaries differed significantly in the structure and FFG composition of the macroinvertebrate assemblages. Furthermore, riffles in headwater (second order) sections were more variable than those in higher order (third order) sections. 5. Stream biomonitoring programs should consider this kind of scale‐dependent variability in assemblage characteristics because: (i) small‐scale variability in abundance suggests that a few replicate samples are not enough to capture macroinvertebrate assemblage variability present at a site, and (ii) riffles from the same stream may support widely differing benthic assemblages.  相似文献   

17.
The role of macroinvertebrates in the process of leaf breakdown is well studied in temperate streams, but less is known about their role in the tropics. We investigated the effect of reducing macroinvertebrate access to leaf material on leaf breakdown rates in a forested headwater stream in the Luquillo Experimental Forest, Puerto Rico. We measured leaf mass loss using fine and coarse mesh bags over 12 weeks for two common riparian species: Cecropia schreberiana (Moraceae) and Dacryodes excelsa (Burseraceae). Coarse mesh allowed freshwater shrimp and other macroinvertebrates to access leaf material, while fine mesh did not. Leaf breakdown rates did not differ between C. schreberiana and D. excelsa in coarse mesh bags (?0.0375/day vs. ?0.0395/day, respectively), but C. schreberiana breakdown was significantly slower than D. excelsa in fine mesh bags (?0.0159/day vs. ?0.0266/day). Additionally, breakdown in fine mesh bags was significantly slower compared to coarse mesh bags for C. schreberiana, but less so for D. excelsa. Breakdown rates for all treatments were fast relative to those in temperate‐zone streams indicating that both macroinvertebrates and macroinvertebrate‐independent processing can strongly influence leaf decomposition in tropical streams. The difference between C. schreberiana and D. excelsa indicates that the effect of macroinvertebrate exclusion can change with leaf type.  相似文献   

18.
Coal mining in central Appalachia USA causes increased specific conductance in receiving streams. Researchers have examined benthic macroinvertebrate community structure in such streams using temporally discrete measurements of SC and benthic macroinvertebrates; however, both SC and benthic macroinvertebrate communities exhibit intra-annual variation. Twelve central Appalachian headwater streams with reference quality physical habitat and physicochemical conditions (except for elevated SC in eight streams) were sampled ≤fourteen times each between June 2011 and November 2012 to evaluate benthic macroinvertebrate community structure. Specific conductance was recorded at each sampling event and by in situ data loggers. Streams were classified by mean SC Level (Reference, 17–142 μS/cm; Medium, 262–648 μS/cm; and High, 756–1535 μS/cm). Benthic macroinvertebrate community structure was quantified using fifteen metrics selected to characterize community composition and presence of taxa from orders Ephemeroptera, Plecoptera, and Trichoptera. Metrics were analyzed for differences among SC Levels and months of sampling. Reference streams differed significantly from Medium-SC and High-SC streams for 11 metrics. Medium-SC streams had the most metrics exhibiting significant differences among months. Relative abundances of Plecoptera and Trichoptera were not sensitive to SC, as the families Leuctridae and Hydropsychidae exhibited increased relative abundance (vs. reference) in streams with elevated SC. In contrast, Ephemeroptera richness and relative abundance were lower, relative to reference, in elevated-SC streams despite increased relative abundance of Baetidae. Temporal variability was evident in several metrics due to influence by taxa with seasonal life cycles. These results demonstrate that benthic macroinvertebrate communities in elevated-SC streams are altered from reference condition, and that metrics differ in SC sensitivity. The time of year when samples are taken influenced measured levels and differences from reference condition for most metrics.  相似文献   

19.
McKittrick Creek, a discontinuous mountain-desert stream in Guadelupe Mountains National Park, Texas, was sampled at discrete locations (pools) to test for differences in biomass, density, species diversity, equitability, and species richness in the benthic macroinvertebrate community. Significant differences occurred among pools for these biotic characteristics of the benthic community along the downstream gradient. Pools connected by flow were more similar to each other than pools separated by dry reaches. Variation in the quantity of coarse detritus and periphyton best explained differences among pools.  相似文献   

20.
Ecological effects of climate change on terrestrial and marine ecosystems are increasingly apparent but evidence from freshwater is scarce, particularly in Asia. Using data from two subtropical Central China streams, we predicted the changes of some benthic macroinvertebrate communities under various climatic scenarios. Our results show that the average annual air temperature, in the study watershed, increased significantly (P < 0.05) by 0.6 °C over the last 30 years (1978–2007), whereas the average annual water flow declined by 30.9 m3 s–1. Based on the winter sampling of benthic macroinvertebrates at four stream locations over last six years, we observed that macroinvertebrate abundance and Margalef diversity dropped with increasing water temperatures or decreasing smoothed sea surface temperatures (SSST). The winter macroinvertebrate abundance and biodiversity declined by 11.1% and 6.8% for every 1 °C water temperature rise. In contrast, increases in future SSST by one unit would increase winter macroinvertebrate abundance and biodiversity by 38.2% and 16.0%, respectively. Although many dominant taxa were predicted to persist when water temperatures increase by 1 °C, several scarce taxa, e.g., Orthocladius clarkei and Hippeutis umbilicalis, could be at a level of potential local extinction. Our identification of these links, between climate change and stream macroinvertebrate communities, has wide implications for the conservation of mountain stream ecosystems in the upper Yangtze River under scenarios of climate change. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号