共查询到20条相似文献,搜索用时 0 毫秒
1.
Dopamine receptors (DRs) are implicated in modulating a variety of important neuronal processes including those involved in development and plasticity. Although dopamine receptors are known to be internalized in response to ligand activation, the mechanisms regulating this process have not been clearly defined. Here, we show that D2 dopamine receptors (D2Rs) undergo dynamin-2-dependent internalization in response to agonist treatment. Using a cleavable biotin assay to quantify receptor internalization, we found that expression of dynamin-2 mutants defective in GTPase function virtually abolished agonist-induced D2R internalization. In contrast, expression of a dynamin-1 mutant did not alter D2R internalization. In human embryonic kidney (HEK) 293 cells and primary striatal neurons, dynamin-2 was found to localize to sites of D2R internalization. Dynamin/D2R association was examined in adult rat forebrain using subcellular fractionation and coimmunoprecipitation methods. D2Rs and dynamin-2 were coexpressed in non-synaptosomal fractions, and dynamin-2 was found to coimmunoprecipitate with the D2R signalling complex (signalplex). Taken together, our findings suggest that dynamin-2 regulates D2R internalization and thus is likely to play an important role in D2R mediated dopaminergic transmission. 相似文献
2.
The aim of the study was to examine the mechanisms by which ACh, acting via m2 receptors, regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. VIP induced VPAC(2) receptor phosphorylation and internalization in freshly dispersed smooth muscle cells. Co-stimulation with acetylcholine (ACh), in the presence of m3 receptor antagonist, 4-DAMP, augmented VPAC(2) receptor phosphorylation and internalization. The m2 receptor antagonist methoctramine or the c-Src inhibitor PP2 blocked the effect of ACh, suggesting that the augmentation was mediated by c-Src, derived from m2 receptor activation. ACh induced activation of c-Src and phosphorylation of GRK2 and the effects of ACh were blocked by methoctramine, PP2, or by uncoupling of m2 receptors from G(i3) with pertussis toxin. In conclusion, we identified a novel mechanism of cross-regulation of GRK2-mediated phosphorylation and internalization of G(s)-coupled VPAC(2) receptors by G(i)-coupled m2 receptors via tyrosine phosphorylation of GRK2 and stimulation of GRK2 activity. 相似文献
3.
Murthy KS Mahavadi S Huang J Zhou H Sriwai W 《American journal of physiology. Cell physiology》2008,294(2):C477-C487
The smooth muscle of the gut expresses mainly G(s) protein-coupled vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptors (VPAC(2) receptors), which belong to the secretin family of G protein-coupled receptors. The extent to which PKA and G protein-coupled receptor kinases (GRKs) participate in homologous desensitization varies greatly among the secretin family of receptors. The present study identified the novel role of PKA in homologous desensitization of VPAC(2) receptors via the phosphorylation of GRK2 at Ser(685). VIP induced phosphorylation of GRK2 in a concentration-dependent fashion, and the phosphorylation was abolished by blockade of PKA with cell-permeable myristoylated protein kinase inhibitor (PKI) or in cells expressing PKA phosphorylation-site deficient GRK2(S685A). Phosphorylation of GRK2 increased its activity and binding to G betagamma. VIP-induced phosphorylation of VPAC(2) receptors was abolished in muscle cells expressing kinase-deficient GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. VPAC(2) receptor internalization (determined from residual (125)I-labeled VIP binding and receptor biotinylation after a 30-min exposure to VIP) was blocked in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. Finally, VPAC(2) receptor degradation (determined from residual (125)I-labeled VIP binding and receptor expression after a prolonged exposure to VIP) and functional VPAC(2) receptor desensitization (determined from the decrease in adenylyl cyclase activity and cAMP formation after a 30-min exposure to VIP) were abolished in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A). These results demonstrate that in gastric smooth muscle VPAC(2) receptor phosphorylation is mediated by GRK2. Phosphorylation of GRK2 by PKA enhances GRK2 activity and its ability to induce VPAC(2) receptor phosphorylation, internalization, desensitization, and degradation. 相似文献
4.
Oligomerization of the short (D(2S)) and long (D(2L)) isoforms of the dopamine D(2) receptor was explored in transfected Cos-7 cells by their C-terminal fusion to either an enhanced cyan or enhanced yellow fluorescent protein (ECFP or EYFP) and the fluorescent fusion protein interaction was monitored by a fluorescence resonance energy transfer (FRET) assay. The pharmacological properties of the fluorescent fusion proteins, as measured by both displacement of [(3)H]nemonapride binding and agonist-mediated stimulation of [(35)S]GTPgammaS binding upon co-expression with a G(alphao)Cys(351)Ile protein, were not different from the respective wild-type D(2S) and D(2L) receptors. Co-expression of D2S:ECFP+D2S:EYFP in a 1:1 ratio and D2L:ECFP+D2L:EYFP in a 27:1 ratio resulted, respectively, in an increase of 26% and 16% in the EYFP-specific fluorescent signal. These data are consistent with a close proximity of both D(2S) and D(2L) receptor pairs of fluorescent fusion proteins in the absence of ligand. The agonist-independent D(2S) receptor oligomerization could be attenuated by co-expression with either a wild-type, non-fluorescent D(2S) or D(2L) receptor subtype, but not with a distinct beta(2)-adrenoceptor. Incubation with the agonist (-)-norpropylapomorphine dose-dependently (EC(50): 0.23+/-0.06 nM) increased the FRET signal for the co-expression of D2S:ECFP and D2S:EYFP, in support of agonist-dependent D(2S) receptor oligomerization. In conclusion, our data strongly suggest the occurrence of dopamine D(2) receptor oligomers in intact Cos-7 cells. 相似文献
5.
N-type channels are located on dendrites and at pre-synaptic nerve terminals where they play a fundamental role in neurotransmitter release. They are potently regulated by the activation of a number of different types of pertussis toxin (PTX)-sensitive G alpha(i/o) coupled receptors, which results in voltage-dependent inhibition of channel activity via G betagamma subunits. Using heterologous expression in HEK 293T cells, we show via whole cell patch clamp recordings that D2 receptors mediate both G betagamma (i.e., voltage-dependent) and voltage-independent inhibition of channel activity. Furthermore, using co-immunoprecipitation and pull down assays involving the intracellular regions of each protein, we show that D2 receptors and N-type channels form physical signaling complexes. Finally, we use confocal microscopy to demonstrate that D2 receptors regulate N-type channel trafficking to affect the number of calcium channels available at the plasma membrane. Taken together, these data provide evidence for multiple voltage-dependent and voltage-independent mechanisms by which D2 receptor subtypes influence N-type channel activity. 相似文献
6.
《Channels (Austin, Tex.)》2013,7(4):269-277
N-type channels are located on dendrites and at pre-synaptic nerve terminals where they play a fundamental role in neurotransmitter release. They are potently regulated by the activation of a number of different types of pertussis toxin (PTX)-sensitive Gαi/o coupled receptors, which results in voltage-dependent inhibition of channel activity via Gβγ subunits. Using heterologous expression in HEK 293T cells, we show via whole cell patch clamp recordings that D2 receptors mediate both Gβγ (i.e. voltage-dependent) and voltage-independent inhibition of channel activity. Furthermore, using co-immunoprecipitation and pull down assays involving the intracellular regions of each protein, we show that D2 receptors and N-type channels form physical signaling complexes. Finally, we use confocal microscopy to demonstrate that D2 receptors regulate N-type channel trafficking to affect the number of calcium channels available at the plasma membrane. Taken together, these data provide evidence for multiple voltage-dependent and voltage-independent mechanisms by which D2 receptor subtypes influence N-type channel activity. 相似文献
7.
GRK2-dependent desensitization downstream of G proteins 总被引:2,自引:0,他引:2
Jurado-Pueyo M Campos PM Mayor F Murga C 《Journal of receptor and signal transduction research》2008,28(1-2):59-70
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases first discovered by its role in receptor desensitization. Phosphorylation of the C-terminal tail of GPCRs by GRKs triggers the docking of beta-arrestins and the functional uncoupling of G proteins and receptors. In addition, we and others have uncovered new direct ways by which GRKs could impinge into intracellular signalling pathways independently of receptor phosphorylation. In particular, we have characterized that elevated GRK2 levels can reduce CCR2-mediated activation of the ERK MAPK route in a manner that is independent of kinase activity and also of G proteins. This inhibition of ERK occurred in the absence of any reduction on MEK phosphorylation, what implicates that GRK2 is acting at the level of MEK or at the MEK-ERK interface to achieve a downregulation of ERK phosphorylation. In fact, we describe here that a direct association between GRK2 and MEK proteins can be detected in vitro. p38 MAPK pathway also appears to be regulated directly by GRK2 in a receptor-independent manner. p38 can be phosphorylated by GRK2 in threonine 123, a residue sitting at the entrance of a docking groove by which this MAPK associates to substrates and upstream activators. The T123phospho-mimetic mutant of p38 shows a reduced ability to bind to MKK6, concomitant with an impaired p38 activation, and a decreased phosphorylation of downstream substrates such as MEF2, MK2 and ATF2. Elevated levels of GRK2 downregulate p38-dependent cellular responses, such as differentiation of preadipocytic cells, while LPS-induced cytokine release is enhanced in macrophages from GRK2 (+/-) mice. In sum, we describe in this article different ways by which GRK2 directly regulates MAPK-mediated cellular events. This regulation of the MAPK modules by GRK2 could be relevant in pathological situations where the levels of this kinase are altered, such as during inflammatory diseases or cardiovascular pathologies. 相似文献
8.
We examined the agonist-dependent sequestration/internalization of dopamine D2 receptor (the long form D2L and short form D2S), which were transiently expressed in COS-7 and HEK 293 cells with or without G-protein-coupled receptor kinases (GRK2 or GRK5). Sequestration was assessed quantitatively by loss of [3H] sulpiride-binding activity from the cell surface and by transfer of [3H] spiperone-binding activity from the membrane fraction to the light vesicle fraction in sucrose-density gradients. In COS-7 cells expressing D2 receptors alone, virtually no sequestration was observed with or without dopamine (< 4%). When GRK2 was coexpressed, 50% of D2S receptors and 36% of D2L receptors were sequestered by treatment with 10(-4) M dopamine for 2 h, whereas no sequestration was observed in cells expressing the dominant negative form of GRK2 (DN-GRK2). When GRK5 was coexpressed, 36% of D2S receptors were sequestered following the same treatment. The agonist-dependent and GRK2-dependent sequestration of D2S receptors was reduced markedly in the presence of hypertonic medium containing 0.45 M sucrose, suggesting that the sequestration follows the clathrin pathway. Internalization of D2S receptors was also assessed by immunofluorescence confocal microscopy. Translocation of D2 receptors from the cell membrane to intracellular vesicles was observed following the treatment with dopamine from HEK 293 cells only when GRK2 was coexpressed. D2S receptors expressed in HEK 293 cells were shown to be phosphorylated by GRK2 in an agonist-dependent manner. These results indicate that the sequestration of D2 receptors occurs only through a GRK-mediated pathway. 相似文献
9.
The glycoprotein nature of the ligand binding subunit of photoaffinity-labeled striatal D2 receptors was investigated. Upon photolysis, [125I]N-azidophenethylspiperone covalently incorporated into a major band of Mr 94000 with an appropriate pharmacological profile for D2 receptors as assessed by autoradiography following SDS-polyacrylamide gel electrophoresis. The exoglycosidase, neuraminidase, altered the electrophoretic mobility of the 94 kDa labeled band to 54 kDa with a slight modification in the binding affinity of [3H]spiperone. Endoglycosidase treatment (glycopeptidase-F) produced a further increase in the mobility of the 94 kDa peptide to approximately 43 kDa. A smaller specifically photolabeled D2 receptor peptide of 34 kDa does not contain terminal sialic acid but is an N-linked glycoprotein as assessed by lectin affinity chromatography and susceptibility to digestion by glycopeptidase-F to a peptide of approximately 23 kDa. 相似文献
10.
Schafer DA Weed SA Binns D Karginov AV Parsons JT Cooper JA 《Current biology : CB》2002,12(21):1852-1857
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes. 相似文献
11.
Roxindole, a DA D2 receptor agonist (2-16 mg/kg) produced dose-dependent increase in percentage antinociception. The effect which was blocked by DA D2 antagonist (-)sulpiride (50 mg/kg) and 5-HT1A receptor antagonist (-) pindolol (5 mg/kg). Roxindole (4 and 8 mg/kg) reversed both naloxone (20 mg/kg)-induced hyperalgesia and reserpine (2 mg/kg)-induced hyperalgesia. This reversal was sensitive to blockade by both (-)sulpiride (50 mg/kg) and (-) pindolol (5 mg/kg). The present study suggests that roxindole-induced antinociception is mediated by postsynaptic DA D2 and 5-HT1A receptors. 相似文献
12.
Eleniste PP Du L Shivanna M Bruzzaniti A 《The international journal of biochemistry & cell biology》2012,44(5):790-800
Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2's FERM domain with dynamin's plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin's GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. 相似文献
13.
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen. 相似文献
14.
Sahlholm K Marcellino D Nilsson J Fuxe K Arhem P 《Biochemical and biophysical research communications》2008,374(3):496-501
Agonist potency at some neurotransmitter receptors has been shown to be regulated by transmembrane voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by autoreceptors and in synaptic plasticity. We have recently described the voltage-sensitivity of the dopamine D2L receptor and we now extend our studies to include the other members of the D2-like receptor subfamily; the D2S, D3, and D4 dopamine receptors. Electrophysiological recordings were performed on Xenopus oocytes coexpressing human dopamine D2S, D3, or D4 receptors with G protein-coupled potassium (GIRK) channels. Comparison of concentration-response relationships at −80 mV and at 0 mV for dopamine-mediated GIRK activation revealed significant rightward shifts for both D2S and D4 upon depolarization. In contrast, the concentration-response relationships for D3-mediated GIRK activation were not appreciably different at the two voltages. Our findings provide new insight into the functional differences of these closely related receptors. 相似文献
15.
Pergolide is a potent, direct-acting dopamine agonist used in treating Parkinson's disease. It is an agonist found recently to have high affinity for D3 receptors. The affinity of pergolide for D1 receptors is lower than for D2 receptors, and there have been some reports that it may not interact with D1 receptors in vivo at doses used to activate D2 receptors. A growing body of evidence suggests that pergolide does occupy and activate D1 receptors in vivo, although the relevance to therapeutic efficacy in Parkinson's disease needs further study. 相似文献
16.
Anita Sidhu 《Molecular neurobiology》1998,16(2):125-134
Dopamine receptors are a subclass of the super family of G protein-coupled receptors, that transduce their effects by coupling
to specific G proteins. Within the dopamine receptor family, the adenylyl cyclase stimulatory receptors include the D1 and D5 subtypes. The D1 and D5 dopamine receptors are genetically distinct, sharing >80% sequence homology within the highly conserved seven transmembrane
spanning domains, but displaying only 50% overall homology at the amino acid level. When expressed in transfected GH4C1 rat pituitary cells, both D1 and D5 receptors stimulate adenylyl cyclase and have identical affinities toward dopaminergic agonists and antagonists. In order
to analyze specific signaling pathways mediated by activation of either D1 or D5 receptors, we have identified the G proteins that are coupled to these receptors. Through functional analyses and competition
binding studies, and from immunoprecipitation techniques, using antisera against the various α subunits of G proteins, we
have established that both D1 and D5 receptors couple to Gsα. In addition, D1 receptors are also coupled to Goα. Since Goα has been implicated in the regulation of Ca2+, K+, and Na+ channels, this finding would suggest that D1 receptors can mediate the functional activity of these ion channels. There is also evidence to indicate that D5 receptors couple to Gzα, a novel G protein abundantly expressed in neurons. Thus, despite similar pharmacological properties, such differential
coupling of D1 and D5 receptors to G proteins other than Gsα, indicates that dopamine can transduce varied signaling responses upon the simultaneous stimulation of both these receptors. 相似文献
17.
Barthet G Gaven F Framery B Shinjo K Nakamura T Claeysen S Bockaert J Dumuis A 《The Journal of biological chemistry》2005,280(30):27924-27934
The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which expressed either no or a weak concentration of GRK2, respectively. High expression of GRK2 in neurons is likely to be the reason for this difference because overexpression of GRK2 in COS-7 and HEK293 cells reproduced rapid and profound uncoupling of 5-HT4R. We have also shown, for the first time, that GRK2 requirements for uncoupling and endocytosis were very different. Indeed, beta-arrestin/dynamin-dependent endocytosis was observed in HEK293 cells without any need of GRK2 overexpression. In addition to this difference, uncoupling and beta-arrestin/dynamin-dependent endocytosis were mediated through distinct mechanisms. Neither uncoupling nor beta-arrestin/dynamin-dependent endocytosis required the serine and threonine residues localized within the specific C-terminal domains of the 5-HT4R splice variants. In contrast, a cluster of serines and threonines, common to all variants, was an absolute requirement for beta-arrestin/dynamin-dependent receptor endocytosis, but not for receptor uncoupling. Furthermore, beta-arrestin/dynamin-dependent endocytosis and uncoupling were dependent on and independent of GRK2 kinase activity, respectively. These results clearly demonstrate that the uncoupling and endocytosis of 5-HT4R require different GRK2 concentrations and involve distinct molecular events. 相似文献
18.
Ilani T Fishburn CS Levavi-Sivan B Carmon S Raveh L Fuchs S 《Cellular and molecular neurobiology》2002,22(1):47-56
D2 and D3 dopamine receptors belong to the superfamily of G protein-coupled receptors; they share a high degree of homology and are structurally similar. However, they differ from each other in their second messenger coupling properties. Previously, we have studied the differential coupling of these receptors to G proteins and found that while D2 receptor couples only to inhibitory G proteins, D3 receptor couples also to a stimulatory G protein, Gs. We aimed to investigate the molecular basis of these differences and to determine which domains in the receptor control its coupling to G proteins. For this purpose four chimeras were constructed, each composed of different segments of the original D2 and D3 receptors. We have demonstrated that chimeras with a third cytoplasmic loop of D2 receptor couple to Gi protein in a pattern characteristic of D2 receptor. On the other hand chimeras containing a third cytoplasmic loop of D3 receptor have coupling characteristics like those of D3 receptor, and they couple also to Gs protein. These findings demonstrate that the third cytoplasmic loop determines and accounts for the coupling of dopamine receptors D2 and D3 to G proteins. 相似文献
19.
E J Homan E Kroodsma S Copinga L Unelius N Mohell H V Wikstr?m C J Grol 《Bioorganic & medicinal chemistry》1999,7(6):1111-1121
Several structural analogues of 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 1), a representative of a series of 2-aminotetralin-derived benzamides with potential atypical antipsychotic properties, were synthesized and evaluated for their ability to bind to dopamine D2A, D3, and serotonin 5-HT1A receptors in vitro. The structure affinity relationships revealed that the aromatic ring of the benzamide moiety of 1 contributes to the high affinities for all three receptor subtypes. Furthermore, 1 may interact with the dopamine D2 and D3 receptors through hydrogen bond formation with its carbonyl group. Investigation of the role of the amide hydrogen atom by amide N-alkylation was not conclusive, since conformational aspects may be responsible for the decreased dopaminergic affinities of the N'-alkylated analogues of 1. The effects of the amide modifications on the serotonin 5-HT1A receptor affinity were less pronounced, suggesting that the benzamidoethyl side-chain of 1 as a whole enhances the affinity for this receptor subtype probably through hydrophobic interactions with an accessory binding site. The structural requirements for the substituents at the basic nitrogen atom supported the hypothesis that the 2-aminotetralin moieties of the 2-aminotetralin-derived substituted benzamides may share the same binding sites as the 2-(N,N-di-n-propylamino)tetralins. 相似文献
20.
Agnati LF Ferré S Genedani S Leo G Guidolin D Filaferro M Carriba P Casadó V Lluis C Franco R Woods AS Fuxe K 《Journal of proteome research》2006,5(11):3077-3083
It has been suggested that L-DOPA-induced hyperhomocysteinemia can increase the risk of stroke, heart disease, and dementia and is an additional pathogenetic factor involved in the progression of Parkinson's disease. In Chinese hamster ovary (CHO) cells stably cotransfected with adenosine A(2A) and dopamine D2 receptors, homocysteine selectively decreased the ability of D2 receptor stimulation to internalize adenosine A(2A)-dopamine D2 receptor complexes. Radioligand-binding experiments in the same cell line demonstrated that homocysteine acts as an allosteric D2 receptor antagonist, by selectively reducing the affinity of D2 receptors for agonists but not for antagonists. Mass spectrometric analysis showed that, by means of an arginine (Arg)-thiol electrostatic interaction, homocysteine forms noncovalent complexes with the two Arg-rich epitopes of the third intracellular loop of the D2 receptor, one of them involved in A(2A)-D2 receptor heteromerization. However, homocysteine was unable to prevent or disrupt A(2A)-D2 receptor heteromerization, as demonstrated with Fluorescence Resonance Energy Transfer (FRET) experiments in stably cotransfected HEK cells. The present results could have implications for Parkinson's disease. 相似文献