首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
BACKGROUND: Localization of nanos mRNA to the posterior pole of the Drosophila embryo directs local synthesis of Nanos protein that is essential for patterning of the anterior-posterior body axis and germ cell function. While nanos RNA is synthesized by the ovarian nurse cells and appears at the posterior pole of the ooctye late in oogenesis, the mechanism by which this RNA is translocated to and anchored at the oocyte posterior is unknown. RESULTS: By labeling endogenous nanos RNA with GFP, we have been able to follow the dynamic pathway of nanos localization in living oocytes. We demonstrate that nanos localization initiates immediately upon nurse cell dumping, whereby diffusion, enhanced by microtubule-dependent cytoplasmic movements, translocates nanos RNA from the nurse cells to the ooctye posterior. At the posterior, nanos is trapped by association, in particles, with the posteriorly localized germ plasm. Actin-dependent anchoring of nanos RNA complexed to the germ plasm at the posterior maintains localization in the face of rapid cytoplasmic movements. CONCLUSIONS: These results reveal a diffusion-based, late-acting posterior localization mechanism for long-range transport of nanos mRNA. This mechanism differs from directed transport-based localization mechanisms in its reliance on bulk movement of RNA.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The formation of the anterior pattern of the Drosophila embryo is dependent on the localization of the mRNA of the morphogen Bicoid (bcd) to the anterior pole of the egg cell. Staufen protein (STAU) is required in a late step of the localization to anchor the bcd mRNA in the anterior cytoplasm. We have shown previously that endogenous STAU associates specifically with injected bcd mRNA 3'-untranslated region (UTR), resulting in the formation of characteristic RNA-protein particles that are transported along microtubules of the mitotic spindles in a directed manner. The regions recognized by STAU in this in vivo assay are predicted to form three stem-loop structures involving large double-stranded stretches. Here, we show that the STAU interaction requires a double-stranded conformation of the stems within the RNA localization signal. In addition, base pairing between two single-stranded loops plays a major role in particle formation. This loop-loop interaction is intermolecular, not intramolecular; thus dimers or multimers of the RNA localization signal must be associated with STAU in these particles. The bcd mRNA 3' UTR can also dimerize in vitro in the absence of STAU. Thus, in addition to RNA-protein interactions, RNA-RNA interaction might be involved in the formation of ribonucleoprotein particles for transport and localization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号