首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Electron microscopy of testicular biopsies obtained from two adult males with tunica vaginal hydrocele revealed some protrusions from the basal lamina to the germinal epithelium in the seminiferous tubule. The protrusions were of three types: some between the spermatogonia and Sertoli cells, some directly within the Sertoli cell cytoplasm and others inside the spermatogonia. The protrusions inside the spermatogonia were only 0.5 m deep whereas the other types were from 1–11 m deep. Occasionally some cut off portions of these protrusions were seen inside the ground cytoplasm of the Sertoli cell without an apparent connection with the original stalk. The matrix of the protrusions contained a homogenous component (composed of a fine filamentous element) and granular and membranous components. These components closely resemble the materials found in the basal lamina of the seminiferous tubule. It has been suggested that under mild pathological conditions, i.e., hydrocele, the junctions between the seminiferous tubule epithelium and the basal lamina become somewhat more flexible. As a result, the protrusions become longer and a passage might be formed to allow the flow of raw materials in or out of the seminiferous tubule.This work was supported by USPHS Research Grant HD-03266 and GRS 94802  相似文献   

2.
Summary Normal (infant and adult) and pathological testes were examined by electron microscopy in order to study testicular innervation. Nerves composed of non-myelinated fibres were abundant in the tunica vasculosa of the tunica albuginea. These nerves penetrated into the testicular septa reaching the interstitial tissue. This showed numerous non-myelinated nerve fibres running among the Leydig cells and blood vessels. Single axons or small groups of them, partially surrounded by Schwann cells, approached: 1) the Leydig cells, 2) the interstitial blood vessels, and 3) the seminiferous tubules. Single naked axons were also observed primarily in the proximity of the seminiferous tubules. These axons showed varicosities containing both small and large synaptic vesicles. The latter were less numerous and contained a central dense core. Small vesicles were agranular. Some varicose axons ran across the myofibroblast layer of the tunica propria reaching the basal lamina of the seminiferous tubules at the level of the Sertoli cells but not at the level of the spermatogonia. The intercellular space between Sertoli cell and axon membrane was about 150–200 nm.Profesor Agregado de Histología y EmbriologíaProfesor Adjunto de Citología e HistologíaProfesor Adjunto de Histología y Embriología  相似文献   

3.
Summary The boundary tissue of bovine testicular seminiferous tubules exhibits remarkable regional differences at the level of the seminiferous tubule proper, as compared with its terminal segment. The basal lamina of the seminiferous tubule proper is multilayered and possesses knob-like protrusions. At the level of the terminal segment the basal lamina is highly specialized; in the region of the terminal plug candelabrum-like projections of the tubular basal lamina invade the bases of the modified supporting cells up to a depth of 3.5 m. The adjoining surface of these supporting cells is densely studded with hemidesmosomes. The elongated peritubular cells are arranged in 3–5 concentric layers around the tubulus seminiferus proper but form a loose association at the level of the terminal segment. Where the terminal segment joins the testicular straight tubule, peritubular cells may assemble to constitute a contractile spiral. Elastic tissue is situated mainly subjacent to the tubular basal lamina and to a lesser degree between the peritubular cell layers. A peritubular space lined by endothelium-like cells may surround the seminiferous tubule proper and also the transitional zone of the terminal segment.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

4.
Testicular development is a complicated process involving differentiation and arrangement of several cell types. To analyze the process of testicular organization we examined the sequence of the appearance of testicular structures induced in fetal ovaries following transplantation. Fetal mouse ovaries on the twelfth day of gestation were transplanted beneath the kidney capsules of adult male mice. They continued to develop morphologically as ovaries until the eleventh day after transplantation, when seminiferous cord formation and testosterone production began in addition to follicle development (ovotestes). Between the eleventh and fourteenth day after transplantation, ovarian grafts frequently contained transitional structures consisting of Sertoli cells, pregranulosa cells, a third type of cells which show intermediate characteristics between Sertoli and pregranulosa cells, and oocytes enclosed by common basal lamina. Leydig cells or peritubular myoid cells were not found in the transitional area, whereas these cells were present around seminiferous cords composed only of Sertoli cells. Oocytes were absent or degenerated in the well-developed seminiferous cords. The present findings suggest that, in ovarian grafts, pregranulosa cells can differentiate into Sertoli cells, which are responsible for the organization of the seminiferous cords, degeneration of oocytes, and differentiation of other testicular somatic cell types.  相似文献   

5.
Summary Membrane-bounded spherical vesicles found in rat Sertoli cells have been examined quantitatively during the cycle of the seminiferous epithelium. Most of the vesicles were localized to the basal and columnar portions of the Sertoli cell cytoplasm. The thin lateral projections of the Sertoli cells contained very few vesicles. Morphometric analysis of the basal portion of the Sertoli cell cytoplasm revealed that the volume density (V v ) of the vesicles changed markedly during the cycle. The V v was at its minimum (0.036) at stage VII and maximum (0.117) at stages XI-I. The vesicles were also smaller at stage VII compared to the vesicles at stages IX-V. The stage-dependent difference in the size of the vesicles was found both in the basal and the columnar portions of the Sertoli cells. At stage VII some of the vesicles appeared to be elongated much like the tubular elements of the smooth endoplasmic reticulum (SER) from which they are probably derived. The stage-dependent differences in volume density and size of the Sertoli cell vesicles may be related to cyclic biochemical variations in the Sertoli cells, and are further indications of a variation in Sertoli cell function during the cycle of the seminiferous epithelium. Whether or not this is due to an internal cycle of the Sertoli cell or to influences from adjacent germ cells remains to be determined.  相似文献   

6.
Summary The initial phases of the development of the seminiferous cords (future seminiferous tubules) were studied with histological techniques and with electron microscopy. On day 14 after fertilization, seminiferous cords are well differentiated in the anterior part of the testis near the mesonephric tubules. They comprise Sertoli cells which encompass the primordial germ cells. The Sertoli cells show an expanded clear cytoplasm and microfilaments beneath the outer surface; they differentiate complex contact zones. On day 13 a few cells localized near the mesonephric tubules display the characteristics of the Sertoli cells. These cells become more and more numerous. They aggregate and they form the seminiferous cords.The primordia of male gonads explanted in vitro on the mesonephros, realize testicular organogenesis in a synthetic medium. Adding 15% fetal calf serum to the medium prevents the morphogenesis of the testicular cords, although the Sertoli cells seem to differentiate morphologically and physiologically. In these gonads differentiation of the Sertoli cells was obtained but their aggregation and the morphogenesis of the seminiferous cords were prevented. This gives new insights into testicular morphogenesis and probably provides an experimental model for a new type of gonadal anomaly.  相似文献   

7.
Summary As revealed by light microscopical investigations the human Sertoli cell presents different appearances according to the pattern of infranuclear cytoplasmic inclusions. Although two or three stages of spermatogenesis are seen in a single cross section of a seminiferous tubule the Sertoli cells all show virtually the same features in such a cross sectioned tubule.The different appearances are also evident under the electron microscope. Although no obvious correlation was found with the stages of spermatogenesis in the seminiferous epithelium, the Sertoli cell appearances described here may be assumed to represent different metabolic situations.Other features of Sertoli cell ultrastructure are discussed such as the presence of residual bodies in the apical cytoplasm, glycogen-rich areas protruding towards the tubular lumen or the extracellular space, and membrane bound, round structures, found between the membranes of the smooth endoplasmic reticulum and resembling the microbodies of steroid producing cells.Presented in part at the 69th Versammlung der Anatomischen Gesellschaft, Kiel, 1974.  相似文献   

8.
When tissues are processed for electron microscopy by conventional methods, such as glutaraldehyde fixation followed by rapid dehydration in acetone, basement membranes show two main layers: the electron-lucent lamina lucida (or rara) and the electrondense lamina densa. In an attempt to determine whether this subdivision is real or artefactual, two approaches have been used. Firstly, rat and mouse seminiferous tubules, mouse epididymis and associated tissues, and anterior parts of mouse eyes were subjected to cryofixation by instant freezing followed by freeze substitution in a-80° C solution of osmium tetroxide in dry acetone, which was gradually warmed to room temperature over a 3-day period. The results indicate that, in areas devoid of ice crystals, basement membranes consist of a lamina densa in direct contact with the plasmalemma of the associated cells without an intervening lamina lucida. Secondly, a series of tissues from mice perfused with 3% glutaraldehyde were cryoprotected in 30% glycerol, frozen in Freon 22 and subjected to a 3-day freeze substitution in osmium tetroxide-acetone as above. Under these conditions, no lamina lucida accompanies the lamina densa in the basement membranes of the majority of tissues, including kidney, thyroid gland, smooth and skeletal muscle, ciliary body, seminiferous tubules, epididymis and capillary endothelium. Thus, even though these tissues have been fixed in glutaraldehyde, no lamina lucida appears when they are slowly dehydrated by freeze substitution. It is concluded that the occurrence of this lamina in conventionally processed tissues is not due to fixation but to the rapid dehydration. However, in this series of experiments, the basement membranes of trachea and plantar epidermis include a lamina lucida along their entire length, while those of esophagus and vas deferens may or may not include a lamina lucida. To find out if the lamina lucida appearing under these conditions is a real structure or an artefact, the trachea and epidermis were fixed in paraformaldehyde and slowly dehydrated by freeze substitution. Under these conditions, no lamina lucida was found. Since this result is the same as observed in other tissues by the previous approaches, it is proposed that the lamina lucida is an artefact in these as in the other investigated basement membranes. Thus, basement membranes are simply composed of a lamina densa that closely follows the plasmalemma of the associated cells. At high magnification, the lamina densa consists of a tridimensional network of cords, while the plasmalemma is covered by a glycocalyx; close contact is observed between cords and glycocalyx and is interpreted by assuming that the laminin present in the cords binds to laminin receptors in the glycocalyx.  相似文献   

9.
Summary The fine structure of Sertoli cells in three marine prosobranch molluscs has been studied with light- and electron microscopy. Sertoli cells of prosobranchs are modified columnar epithelial cells that maintain continuous contact with the basal lamina and extend from it to the lumen of a testicular tubule. Spermatogenesis takes place between adjacent Sertoli cells, but a continuous layer of cytoplasm separates the spermatogonia from the basal lamina, thus restricting the basal compartment to spermatogonium mother cells. Substances traversing the basal lamina from the interstitial space must pass either through or between the Sertoli cells. However, between the cells, a permeability barrier composed of septate and desmosome-like junctions blocks the passage of substances, such as the tracer lanthanum nitrate. The basally-located nucleus is irregularly shaped with fine granular euchromatin and some peripheral heterochromatin; satellite karyosomes border the nucleolus. There is an extensive intracellular digestive system that is used effectively to phagocytize waste sperm and residual cytoplasm. Cytoplasmic processes of Sertoli cells penetrate throughout the germinal epithelium. In some prosobranchs that exhibit sperm polymorphism these processes must coordinate to bring together a clone of eupyrene sperm and a carrier sperm at a particular time in development. The only cytoskeletal elements available within the processes to generate such movements are microtubules.We propose that the term nurse cell, which has been used in the past to describe at least three different cell types, including Sertoli cells and apyrene sperm, be restricted to abortive oogonia that contribute to development of an oocyte.This paper was cited in a previous publication (Buckland-Nicks et al. 1982) under the title: A comparative investigation into the relationship between Sertoli cells, eupyrene and apyrene sperm in the testis of two marine snails  相似文献   

10.
Summary Ultrastructural features and morphometric evaluations of buffalo Sertoli cells are reported for the six phases of the spermatogenic cycle. The phases of the tubular seminiferous epithelium are identified according to characteristic cellular associations with completed spermiation as demarcation between two cycles. Average tubular diameter (245 m) and epithelial height (61 m) do not vary significantly during the cycle. The relative Sertoli cell volume in the seminiferous epithelium varies between 30% (phase 4) and 39% (phase 8). The calculated volume of a single Sertoli cell increases from a nadir of 7118 m3 in phase 3 abruptly to a maximum of 8968 m3 in phase 4 and is then gradually reduced during the following phases. The Sertoli cell surface area shows a similar trend: it amounts to 11105 m2 in phase 3 and to 14260 m2 in phase 4. The contact area of the Sertoli cell with adjacent cells and structures is subject to characteristic changes; from the expansion of basal Sertoli-Sertoli contacts it is concluded that the blood-testis barrier in the buffalo is particularly tight during phases 8, 1 and 2. The irregularly contoured nucleus contains a vesicular nucleolus, has a calculated volume from 465 m3 to 543 m3 and occupies 5 to 7% of the cell. Volume percentages of mitochondria (4%), Golgi apparatus and lysosomal bodies are rather constant during the cycle. Whorls and orderly arranged aggregates of the smooth endoplasmic reticulum occur in basal location as well as in close association with elongating spermatids. Smooth ER is the organelle that exhibits the most prominent changes during the Sertoli cell cycle: it occupies 5.79% in phase 3 and 20.9% in phase 4 of the total cellular volume. Phagocytosis of residual bodies is insignificant in this species and a lipid cycle is absent in buffalo Sertoli cells.  相似文献   

11.
Hans Rähr 《Zoomorphology》1981,97(1-2):53-74
Summary The ultrastructure of the blood vessels of Branchiostoma has been studied using selected characteristic vessels as examples. It is shown that the vessels are a part of the original blastocoelic cavity and are delimited either by the basal laminae of adjacent epithelia or by connective tissue developed in the blastocoelic space. A brief account of the kinds of connective tissue is given. The observed contractility of some vessels depends on two types of contractile filaments situated in the basal part of the surrounding coelomic epithelia. Amoebocytelike cells are present in the blood. They may sometimes lie in contact with the wall of the vessels or with each other, but never form a typical endothelium with junctional complexes and a basal lamina of its own. Actually, there is no endothelium in any part of the vascular system. It is suggested that the term endothelium should be reserved for a closed cellular lining (with junctions) on the luminal side of the vessel wall, standing on a basal lamina of its own and forming a barrier for the exchange between blood and surrounding tissue. It is concluded that the principal structure of the vascular system of Branchiostoma is different from that of vertebrates, but the same as that of other coelomate invertebrates. The blood vessels in these animals are typically delimited directly by a basal lamina secreted by epithelia (epidermal, coelomic or intestinal) lying peripheral to this lamina, and a true endothelium is not present (with a few questionable exceptions).Abbreviations ac atrial cavity - ace atrial epithelium - ao aorta - ap atrial plexus - ax axon bundle - bc blood cell - bl basal lamina - bl 1 basal lamina of intestinal epithelium - bl 2 basal lamina of visceral coelomic epithelium - bl 3 basal lamina of parietal coelomic epithelium - bl 4 basal lamina of atrial epithelium - bll basement lamella - cf contractile filaments - co coelomic cavity - coe coelomic epithelium - coe p parietal coelomic epithelium - coe v visceral coelomic epithelium - ct dense connective tissue - dv longitudinal dorsal vessel - ep epidermis - epe epipharyngeal groove epithelium - epg epipharyngeal groove - fb fibroblast (?) - fi collagen fiber - fl fibril layer - go gonad - hd hemidesmosome - ie intestinal epithelium - in intestine proper - ip intestinal plexus - iv afferent intestinal vessel - ld liver diverticulum - lu vascular lumen - me myocoelic epithelium - ml muscle lamella - mp myoseptal plexus - ms myoseptum - my myomer - myc myocoelic cavity - nc notochord - ns notochordal sheath - ph pharynx - suc subchordal coelom - sv subintestinal vessel - svv segmental ventral vessel - vv longitudinal ventral vessel Supported by a grant from the Danish Natural Science Research Council  相似文献   

12.
Summary The testes of adult male Syrian hamsters underwent involution within six weeks after optic enucleation. The diameter of the seminiferous tubules was 39% less than controls. Sertoli cells, spermatogonia, and primary spermatocytes were still present, but all steps of spermatids were completely absent from the involuted testes. Lipid droplets filled the Sertoli cell cytoplasm and often encroached upon the nucleus. Sertoli cells had sparse mitochondria and smooth endoplasmic reticulum, but Golgi cisternae were abundant. Typical SertoliSertoli junctions attached contiguous Sertoli cells. With lanthanum tracers it was demonstrated that these junctions were impenetrable; therefore, the bloodtestis barrier was deemed intact. Irregularly shaped protrusions often arose from the peritubular tissue and extended inward toward the seminiferous epithelium, often displacing the cytoplasm of the Sertoli cells and spermatogonia. The core of these protrusions consisted of irregular extensions of myoid cell cytoplasm surrounded by the myoid cells' basal lamina. External to the myoid cell basal lamina were bundles of collagen filaments with the basal lamina of the seminiferous epithelium forming the outermost layer of these protrusions. The apices of the Sertoli cells gave rise to numerous leaf-like processes that extended into and obliterated the lumen of the tubules. The Sertoli cell basal cytoplasm often contained phagocytized degenerating germ cells that appeared to give rise to the lipid droplets that filled the Sertoli cell cytoplasm. Acid phosphatase rich lysosome-like organelles were seen fusing with the degenerating germ cells and lipid droplets. The degenerating germ cells also were shown to contain acid phosphatase activity.  相似文献   

13.
Summary The distribution of lymph vessels in the human testis was investigated using ink injection methods, and light and electron microscopy. Lymph capillaries occur in the septula testis but are absent in the intertubular tissue. They consist of endothelial cells provided with an incomplete basal lamina and anchoring filaments of the adjacent connective tissue. Frequently, the endothelial cells are separated by gaps measuring up to 2m. The lymph capillaries of the septula testis are connected to lymph vessels in the rete testis and tunica albuginea. These vessels have occasional smooth muscle cells and valves. At the posterior margin of the testis, the network of lymph vessels merges into collecting ducts, which together with vessels derived from the rete testis are drained by the lymphatic system in the spermatic cord.Dedicated to Prof. Henriette Oboussier, Hamburg, on the occasion of her 65th birthday  相似文献   

14.
The present study compares the ultrastructural features of Sertoli cells and germ cells between scrotal testes of healthy boars and abdominal testes of unilateral and bilateral cryptorchid boars. In healthy boars, spermatogonia are flat cells lying in close association with the basal lamina. As differentiation progresses, spermatogonia acquire an oval profile and lose their contact with the basal lamina. Spermatocytes are round cells moving from the basal compartment of the seminiferous epithelium to the luminal compartment. Spermatids exhibit complex morphological changes leading to the formation of spermatozoa. Sertoli cells extend from the basal lamina to the tubular lumen. The nucleus encloses fine euchromatin and one or two nucleoli; the nuclear envelope has a few deep infoldings. The lateral cell membranes form junctional specializations that constitute the blood-testis barrier. The cytoplasm encloses smooth endoplasmic reticulum, vesicles, aggregates, and scattered mitochondria. The seminiferous epithelium of abdominal testes from unilateral and bilateral cryptorchid boars contains few spermatogonia with an abnormal appearance; the alteration in germ cell number is more severe in the bilateral disease. In unilateral cryptorchid boars, spermatogonia appear as either large pyramidal cells or roundish cells; in bilateral cryptorchid boars, spermatogonia show roundish profiles and degenerative patterns. Abdominal testes of both unilateral and bilateral cryptorchid boars are constituted by immature Sertoli cells that show abnormal cytoplasmic content, defective development of the blood-testis barrier, and atypical nuclear appearance; in bilateral cryptorchid boars, immature Sertoli cells exhibit degenerative signs. At postpubertal age, unilateral and bilateral cryptorchidism induce total arrest of spermatogenesis at spermatogonial stage as a result of an abnormal differentiation of the Sertoli cells. Moreover, the degeneration of abdominal testes initiates earlier in bilateral cryptorchidism than in unilateral cryptorchidism.  相似文献   

15.
In this study, we examined the age-related changes on morphometric parameters and ultrastructure of seminiferous tubules, and on the expression of extracellular matrix proteins in lamina propria of Syrian hamsters. A significant decrease in the percentage of normal tubules and an increase in the percentage of hypospermatogenic and arrested maturation tubules was observed with aging. Aged animals showed a decrease in tubular diameter, tubular lumen, seminiferous epithelium volume and total tubular volume. However, the total length of seminiferous tubules was significantly increased with aging. The most important ultrastructural changes with aging were the thickening of the lamina propria, the presence of diverse abnormalities in the spermiogenesis process, degeneration of germ cells, and vacuolization and flattening of Sertoli cells showing abundant lipofucsin droplets and residual bodies. Laminin immunoreactivity was found along the lamina propria of seminiferous tubules both in young and aged animals. Fibronectin immunoreactivity was found along the lamina propria and blood vessels. Both laminin and fibronectin total volume of immunostaining per testis was increased in aged hamsters. In conclusion, the age-related changes in seminiferous tubules of hamster include: a decrease in tubular width and an increase in tubular length; widening of the lamina propria caused by a more extensive connective matrix between the peritubular cells and the basal membrane; and a strong disarrangement of the seminiferous epithelium, including germ cell degeneration and important alterations in both spermiogenesis and Sertoli cell structure.  相似文献   

16.
Summary An ultrastructural and tracer study was undertaken to determine normal outflow pathways of cerebrospinal fluid (CSF) at the terminal subarachnoid space (SAS) of the optic nerve. In the morphological studies, the optic nerve dura and arachnoid were found to be continuous with the sclera of the eye beyond the optic nerve SAS. The pia mater is continuous with the inner sciera and the lamina fusca of the eye. Montages and serial sections demonstrated that the distal SAS is divided into numerous tortuous channels to form an arachnoidal trabecular meshwork. Spaces of this meshwork continue into microcanals which bypass the outer arachnoid barrier layers of the optic nerve meninges to reach the sclera and posterior intraorbital connective tissue. Ferritin infused into the cisterna magna entered the optic nerve SAS within 1 min and reached arachnoidal trabecular meshwork channels and the microcanals within 8 min. It then passed into intraorbital connective tissue spaces at the posterior pole of the eye. Ferritin appeared to be blocked by the lamina fusca and a newly discovered posterior compact zone which together prevented its entrance into the choroidal interstitium. These observations suggest that a subarachnoidal-scleral-orbital outflow pathway provides a route for CSF drainage from the optic nerve SAS to intraorbital connective tissue. The previously described posterior uveal compartment in the hamster eye (Kelly et al. 1983) appears to be relatively isolated from this subarachnoidal-scleral-orbital CSF outflow.Parts of this work have been presented at the 1984 meetings of the American Association of Anatomists (Shen 1984).  相似文献   

17.
Electron microscopy of the male phase of the ovotestis of Amphiprion frenatus , a protandric hermaphrodite, showed no connective tissue between male and female areas and, as the basal lamina was lacking both along the seminiferous tubules and round the previtellogenic oocytes, the male and female germ cells were only separated by their respective surrounding somatic cells (Sertoli and follicle cells). Besides previtellogenic oocytes, oocytes in meiotic prophase and very small (young) previtellogenic oocytes, were detected in the ovarian part, as spermatogenesis proceeded, revealing oogenetic activity. Degeneration of some previtellogenic oocytes and their follicle cells was discernible.  相似文献   

18.
The present study demonstrates histological and immunohistochemical changes in the peritubular testicular tissue of rat testis after application of cadmium chloride. After 5-day cadmium exposure, advanced deterioration of the boundary testicular tissue, mainly oedema, disarrangement of collagen fibres and peritubular cells, dilatation and thrombosis of blood vessels were observed. Changes in the boundary tissue were accompanied with desquamation of the germinal epithelium. Immunohistochemically, positive reaction for α-smooth muscle actin and desmin in tunica media of large testicular blood vessels basically was not affected. No reaction for vimentin was seen in endothelial cells of blood capillaries, whereas positive reaction presented only these cells in large blood vessels. The myofibroblasts positively reacting for desmin and α-smooth muscle actin form a single incomplete layer in the lamina propria of seminiferous tubules. Vimentin reactivity in the myofibroblasts and in the supporting Sertoli cells as well as Leydig cells in damaged testicular tissue was not observed. An increase in fibroblasts and free inflammatory cells positive for vimentin in the peritubular space on the peripheric area of the testis was observed.  相似文献   

19.
Summary Different types of cell contacts in the seminiferous tubules have been studied electron microscopically in some laboratory and domestic mammals. Specialized inter-Sertoli cell contacts are always present. Most of them show a narrow — partly perhaps closed — intercellular space at some distance from the basement membrane, above the spermatogonia but below the spermatocytes. Fibrillar material is present in the cytoplasm near the junction as well as subsurface cisterns of the endoplasmic reticulum. Two main types of narrow junctions and one wide junction are described. These junctions are interpreted as devices for adhesion and perhaps intercommunication between the basal parts of the Sertoli cells. The narrow junctions are also considered to impede the intercellular transport of substances to spermatocytes and spermatides and into the luminal fluid. This interpretation emphasizes the importance of the Sertoli cells as nurse cells for the spermatocytes and spermatids.Numerous fine branches of the Sertoli cells surround spermatocytes, spherical spermatids, and true residual bodies, and others protrude deeply into the postnuclear cytoplasm of elongated spermatids. The plasma membrane of developing spermatids turns thicker and becomes a distinct unit membrane. Dense, fibrillar material and long, narrow subsurface cisterns are always present in the Sertoli cells along their border to the acrosomal area of the elongated spermatids. This arrangement is interpreted as an attachment device of hemidesmosomal character.Intercellular bridges are considered to interconnect as many as four primary spermatocytes or sixteen spermatids.  相似文献   

20.
Reticular meshwork of the spleen in rats studied by electron microscopy   总被引:2,自引:0,他引:2  
The reticular meshwork of the rat spleen, which consists of both fibrous and cellular reticula, was investigated by transmission electron microscopy. The fibrous reticulum of the splenic pulp is composed of reticular fibers and basement membranes of the sinuses. These reticular fibers and basement membranes are continuous with each other. The reticular fibers are enfolded by reticular cells and are composed of two basic elements: 1) peripheral basal laminae of the reticular cells, and 2) central connective tissue spaces in which microfibrils, collagenous fibrils, elastic fibers, and unmyelinated adrenergic nerve fibers are present. The basement membranes of the sinuses are sandwiched between reticular cells and sinus endothelial cells and are composed of lamina-densalike material, microfibrils, collagenous fibrils, and elastic fibers. The presence of these connective tissue fibrous components indicates that there are connective tissue spaces in these basement membranes. The basement membrane is divided into three parts: the basal lamina of the reticular cell, the connective tissue space, and the basal lamina of the sinus endothelial cell. When the connective tissue space is very small or absent, the two basal laminae may fuse to form a single, thick basement membrane of the splenic sinus wall. The fibrous reticulum having these structures is responsible for support (collagenous fibrils) and rebounding (elastic fibers). The cells of the cellular reticulum--reticular cells and their cytoplasmic processes, which possess abundant contractile microfilaments, dense bodies, hemidesmosomes, basal laminae, and a well-developed, rough-surfaced endoplasmic reticulum, and Golgi complexes, which are characteristic of both fibroblasts and smooth muscle cells--are considered to be myofibroblasts. They may play roles in splenic contraction and in fibrogenesis of the fibrous reticulum. The contractile ability may be influenced by the unmyelinated adrenergic nerve fibers that pass through the reticular fibers. The three-dimensional reticular meshwork of the spleen consists of sustentacular fibrous reticulum and contractile myofibroblastic cellular reticulum. This meshwork not only supports the organ but also contributes to a contractile mechanism in circulation regulation, in collaboration with major contractile elements in the capsulo-trabecular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号