首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging of collectively invading cocultures of carcinoma cells and stromal fibroblasts reveals that the leading cell is always a fibroblast and that carcinoma cells move within tracks in the extracellular matrix behind the fibroblast. The generation of these tracks by fibroblasts is sufficient to enable the collective invasion of the squamous cell carcinoma (SCC) cells and requires both protease- and force-mediated matrix remodelling. Force-mediated matrix remodelling depends on integrins alpha3 and alpha5, and Rho-mediated regulation of myosin light chain (MLC) activity in fibroblasts, but these factors are not required in carcinoma cells. Instead, carcinoma cells use Cdc42 and MRCK (myotonic dystrophy kinase-related CDC42-binding protein kinases) mediated regulation of MLC to follow the tracks generated by fibroblasts.  相似文献   

2.
Focal contacts, large macromolecular complexes that link the extracellular matrix and the internal cell cytoskeleton, are thought to govern cell locomotion. However, the maturation process through which focal contacts control the cellular migratory machinery by changes in size and molecular composition remain unclear. Here, we fabricated cell growth substrates that contained linear ECM strips of micron- or submicron-width in order to limit the enlargement of focal contacts. We found that NBT-II cells plated on the submicron substrate possessed smaller focal complexes that exhibited a highly dynamic turnover. These cells possessed various leading edges at multiple sites of the cell periphery, which prevented the cell from advancing. In contrast, cells grown on the micron-width substrate possessed large and stable focal adhesions. Most of these cells were elongated bipolar cells that were tethered at both ends and were immobile. Further, EGF and ROCK signaling pathways can modulate the cellular migratory responses according to the substrate guidance. On the submicron-width substrate, EGF treatment increased the focal contact size and the contractile force, causing these cells to develop one leading edge and migrate along the submicron-sized ECM paths. In contrast, inhibition of ROCK signaling decreased the focal contact size for cells plated on the micron substrate. These cells became less tethered and were able to migrate along or even across the micron-sized ECM paths. Our results indicate that formation and maturation of focal contacts is controlled by both ECM cues and intracellular signaling and they play a central role in directed cell motion.  相似文献   

3.
The generation of contractile force mediated by actin-myosin interactions is essential for cell motility. Myosin activity is promoted by phosphorylation of myosin light chain (MLC). MLC phosphorylation in large part is controlled by kinases that are effectors of Rho family GTPases. Accordingly, in this study we examined the effects of ROCK and Rac1 inhibition on MLC phosphorylation in astrocytoma cells. We found that low concentrations of the ROCK inhibitor Y27632 increased the phosphorylation state of the Triton X-100 soluble fraction of MLC, whereas higher concentrations of Y27632 decreased soluble phospho-MLC. These effects of Y27632 were dependent on Rac1. The soluble form of phospho-MLC comprises about 10% of total phospho-MLC in control cells. Interestingly, ROCK inhibition led to a decrease in the phosphorylation state of total MLC, whereas Rac1 inhibition had little effect. Thus, the soluble form of MLC is differentially regulated by ROCK and Rac1 compared with MLC examined in a total cell extract. We also observed that astrocytoma migration is stimulated by low concentrations of the myosin II inhibitor blebbistatin. However, higher concentrations of blebbistatin inhibit migration leading us to believe that migration has a biphasic dependence on myosin II activity. Taken together, our data show that modulation of myosin II activity is important in determining optimal astrocytoma migration. In addition, these findings suggest that there are at least two populations of MLC that are differentially regulated.  相似文献   

4.
Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.  相似文献   

5.
Inhibition of Rho-associated protein kinase (ROCK) activity in glioma C6 cells induces changes in actin cytoskeleton organization and cell morphology similar to those observed in other types of cells with inhibited RhoA/ROCK signaling pathway. We show that phosphorylation of myosin light chains (MLC) induced by P2Y? receptor stimulation in cells with blocked ROCK correlates in time with actin cytoskeleton reorganization, F-actin redistribution and stress fibers assembly followed by recovery of normal cell morphology. Presented results indicate that myosin light-chain kinase (MLCK) is responsible for the observed phosphorylation of MLC. We also found that the changes induced by P2Y? stimulation in actin cytoskeleton dynamics and morphology of cells with inhibited ROCK, but not in the level of phosphorylated MLC, depend on the presence of calcium in the cell environment.  相似文献   

6.
We have investigated the role of the Rho/ROCK signaling pathway in the interaction of metastatic melanoma cells with the brain endothelium. ROCK inhibition induced a shift of melanoma cells to the mesenchymal phenotype, increased the number of melanoma cells attached to the brain endothelium, and strengthened the adhesion force between melanoma and endothelial cells. Inhibition of ROCK raised the number of melanoma cells migrating through the brain endothelial monolayer and promoted the formation of parenchymal brain metastases in vivo. We have shown that inhibition of the Rho/ROCK pathway in melanoma, but not in brain endothelial cells, is responsible for this phenomenon. Our results indicate that the mesenchymal type of tumor cell movement is primordial in the transmigration of melanoma cells through the blood–brain barrier.  相似文献   

7.
Actomyosin contractility is a mechanism by which cells exert locomotory force against their environment. Signalling downstream of the small GTPase Rho increases contractility through Rho-kinase (ROCK)-mediated regulation of myosin-II light chain (MLC2) phosphorylation. Cdc42 signalling has been shown to control cell polarity. Tumour cells can move through a three-dimensional matrix with either a rounded morphology characterized by Rho-ROCK dependence or with an elongated morphology characterized by Rho-ROCK independence. Here we show that contractility necessary for elongated morphology and invasion can be generated by Cdc42-MRCK signalling. MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) cooperates with ROCK in the maintenance of elongated morphology and invasion and either MRCK or ROCK is sufficient for MLC2 phosphorylation, through the inhibitory phosphorylation of myosin phosphatase. By contrast, in rounded ROCK-dependent movement, where MLC2 phosphorylation is higher, MRCK has a smaller role. Our data show that a Cdc42-MRCK signal mediates myosin-dependent cell motility and highlight convergence between Rho and Cdc42 signalling.  相似文献   

8.
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force.  相似文献   

9.
10.
The mechanism by which vascular smooth muscle (VSM) cells modulate their contractility in response to structural cues from extracellular matrix remains poorly understood. When pulmonary VSM cells were cultured on increasing densities of immobilized fibronectin (FN), cell spreading, myosin light chain (MLC) phosphorylation, cytoskeletal prestress (isometric tension in the cell before vasoagonist stimulation), and the active contractile response to the vasoconstrictor endothelin-1 all increased in parallel. In contrast, MLC phosphorylation did not increase when suspended cells were allowed to bind FN-coated microbeads (4.5-microm diameter) or cultured on micrometer-sized (30 x 30 microm) FN islands surrounded by nonadhesive regions that support integrin binding but prevent cell spreading. Cell spreading and MLC phosphorylation also both decreased in parallel when the mechanical compliance of flexible FN substrates was raised. MLC phosphorylation was inhibited independently of cell shape when cytoskeletal prestress was dissipated using a myosin ATPase inhibitor in fully spread cells, whereas it increased to maximal levels when microtubules were disrupted using nocodazole in cells adherent to FN but not in suspended cells. These data demonstrate that changes in cell-extracellular matrix (ECM) interactions modulate smooth muscle cell contractility at the level of biochemical signal transduction and suggest that the mechanism underlying this regulation may involve physical interplay between ECM and the cytoskeleton, such that cell spreading and generation of cytoskeletal tension feed back to promote MLC phosphorylation and further increase tension generation.  相似文献   

11.
ROCK (Rho-kinase), an effector molecule of RhoA, phosphorylates the myosin binding subunit (MBS) of myosin phosphatase and inhibits the phosphatase activity. This inhibition increases phosphorylation of myosin light chain (MLC) of myosin II, which is suggested to induce RhoA-mediated assembly of stress fibers and focal adhesions. ROCK is also known to directly phosphorylate MLC in vitro; however, the physiological significance of this MLC kinase activity is unknown. It is also not clear whether MLC phosphorylation alone is sufficient for the assembly of stress fibers and focal adhesions.We have developed two reagents with opposing effects on myosin phosphatase. One is an antibody against MBS that is able to inhibit myosin phosphatase activity. The other is a truncation mutant of MBS that constitutively activates myosin phosphatase. Through microinjection of these two reagents followed by immunofluorescence with a specific antibody against phosphorylated MLC, we have found that MLC phosphorylation is both necessary and sufficient for the assembly of stress fibers and focal adhesions in 3T3 fibroblasts. The assembly of stress fibers in the center of cells requires ROCK activity in addition to the inhibition of myosin phosphatase, suggesting that ROCK not only inhibits myosin phosphatase but also phosphorylates MLC directly in the center of cells. At the cell periphery, on the other hand, MLCK but not ROCK appears to be the kinase responsible for phosphorylating MLC. These results suggest that ROCK and MLCK play distinct roles in spatial regulation of MLC phosphorylation.  相似文献   

12.
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo.  相似文献   

13.
Citron kinase is a Rho-effector protein kinase that is related to Rho-associated kinases of ROCK/ROK/Rho-kinase family. Both ROCK and citron kinase are suggested to play a role in cytokinesis. However, no substrates are known for citron kinase. We found that citron kinase phosphorylated regulatory light chain (MLC) of myosin II at both Ser-19 and Thr-18 in vitro. Unlike ROCK, however, citron kinase did not phosphorylate the myosin binding subunit of myosin phosphatase, indicating that it does not inhibit myosin phosphatase. We found that the expression of the kinase domain of citron kinase resulted in an increase in MLC di-phosphorylation. Furthermore, the kinase domain was able to increase di-phosphorylation and restore stress fiber assembly even when ROCK was inhibited with a specific inhibitor, Y-27632. The expression of full-length citron kinase also increased di-phosphorylation during cytokinesis. These observations suggest that citron kinase phosphorylates MLC to generate di-phosphorylated MLC in vivo. Although both mono- and di-phosphorylated MLC were found in cleavage furrows, di-phosphorylated MLC showed more constrained localization than did mono-phosphorylated MLC. Because citron kinase is localized in cleavage furrows, citron kinase may be involved in regulating di-phosphorylation of MLC during cytokinesis.  相似文献   

14.
Mechanisms regulating how groups of cells are signaled to move collectively from their original site and invade surrounding matrix are poorly understood. Here we develop a clinically relevant ex vivo injury invasion model to determine whether cells involved in directing wound healing have invasive function and whether they can act as leader cells to direct movement of a wounded epithelium through a three-dimensional (3D) extracellular matrix (ECM) environment. Similar to cancer invasion, we found that the injured cells invade into the ECM as cords, involving heterotypical cell–cell interactions. Mesenchymal cells with properties of activated repair cells that typically locate to a wound edge are present in leader positions at the front of ZO-1–rich invading cords of cells, where they extend vimentin intermediate filament–enriched protrusions into the 3D ECM. Injury-induced invasion depends on both vimentin cytoskeletal function and MMP-2/9 matrix remodeling, because inhibiting either of these suppressed invasion. Potential push and pull forces at the tips of the invading cords were revealed by time-lapse imaging, which showed cells actively extending and retracting protrusions into the ECM. This 3D injury invasion model can be used to investigate mechanisms of leader cell–directed invasion and understand how mechanisms of wound healing are hijacked to cause disease.  相似文献   

15.
We investigated the effects of Rho-associated kinase (ROCK) on migration and cytoskeletal organization in primary human osteoblasts and Saos-2 human osteosarcoma cells. Both cell types were exposed to two different ROCK inhibitors, Y-27632 and HA-1077. In the improved motility assay used in the present study, Y-27632 and HA-1077 significantly increased the migration of both osteoblasts and osteosarcoma cells on plastic in a dose-dependent and reversible manner. Fluorescent images showed that cells of both types cultured with Y-27632 or HA-1077 exhibited a stellate appearance, with poor assembly of stress fibers and focal contacts. Western blotting showed that ROCK inhibitors reduced myosin light chain (MLC) phosphorylation within 5 min without affecting overall myosin light-chain protein levels. Inhibition of ROCK activity is thought to enhance the migration of human osteoblasts through reorganization of the actin cytoskeleton and regulation of myosin activity. ROCK inhibitors may be potentially useful as anabolic agents to enhance the biocompatibility of bone and joint prostheses.  相似文献   

16.
The relationship between force and focal complex development   总被引:23,自引:0,他引:23  
To adhere and migrate, cells must be capable of applying cytoskeletal force to the extracellular matrix (ECM) through integrin receptors. However, it is unclear if connections between integrins and the ECM are immediately capable of transducing cytoskeletal contraction into migration force, or whether engagement of force transmission requires maturation of the adhesion. Here, we show that initial integrin-ECM adhesions become capable of exerting migration force with the recruitment of vinculin, a marker for focal complexes, which are precursors of focal adhesions. We are able to induce the development of focal complexes by the application of mechanical force to fibronectin receptors from inside or outside the cell, and we are able to extend focal complex formation to vitronectin receptors by the removal of c-Src. These results indicate that cells use mechanical force as a signal to strengthen initial integrin-ECM adhesions into focal complexes and regulate the amount of migration force applied to individual adhesions at localized regions of the advancing lamella.  相似文献   

17.
The contractile force generated by hepatic stellate cells in response to endothelin-1 contributes to sinusoidal blood flow regulation and hepatic fibrosis. This study's aim was to directly test the widely held view that changes in cytosolic Ca2+ concentration ([Ca2+]i) mediate stellate cell force generation. Contractile force generation by primary cultures of rat hepatic stellate cells grown in three-dimensional collagen gels was directly and quantitatively measured using a force transducer. Stellate cell [Ca2+]i, myosin activation, and migration were quantified using standard techniques. [Ca2+]i was modulated using ionomycin, BAPTA, KCl, and removal of extracellular Ca2+. Removal of extracellular Ca2+ did not alter endothelin-1-stimulated force development or [Ca2+]i. Ionomycin, a Ca2+ ionophore, triggered an increase in [Ca2+]i that was three times greater than that stimulated by endothelin-1, but only induced 16% of the force and 38% of the myosin regulatory light chain (MLC) phosphorylation induced by endothelin-1. Physiological increases in [Ca2+]i induced by hyperkalemia had no effect on contractile force. Loading BAPTA, a Ca2+ chelator, in stellate cells completely blocked endothelin-1-induced increases in [Ca2+]i but had no effect on endothelin-1-stimulated force generation or MLC phosphorylation. In contrast, Y-27632, a selective rho-associated kinase inhibitor, inhibited endothelin-1-stimulated force generation by at least 70% and MLC phosphorylation by at least 80%. Taken together, these observations indicate that changes in [Ca2+]i are neither necessary nor sufficient for contractile force generation by rat stellate cells. Our results challenge the current model of contractile regulation in hepatic stellate cells and have important implications for our understanding of hepatic pathophysiology.  相似文献   

18.
The nature of interactions between cells migrating through tissues and their structural surroundings are largely unknown. We have therefore examined the ultrastructural relationship between L5222 rat leukemia cells, moving through the loose connective tissue of the mesentery, and components of the extracellular matrix (ECM). Ultrathin tissue sections, fixed in the presence of ruthenium hexammine trichloride (RHT), revealed the following: Constitutents of fibrillar and nonfibrillar elements of the ECM are in contact with the plasma membrane of L5222 cells. Linear nonfibrillar ECM elements contact the plasma membrane at point-like sites, often associated with root-like structures present within the submembraneous microfilament mesh. Aggregates of ECM material are connected to patch-like cell membrane sites, associated with a condensed, plate-like part of the microfilament mesh. Point-like and patch-like contacts are more numerous at the anterior part of polarized migrating L5222 cells than on the posterior end. In round resting leukemia cells they are evenly distributed around the cell periphery. We suggest that the ECM-cell membrane contacts represent tissue adhesion sites. We therefore hypothesize that in migrating cells a coordinate interaction occurs between the contact sites and the continuous microfilament meshwork which results in a simultaneous backward movement of ECM-membrane contacts on the cell body and in a net forward movement of the whole cell. Since Dembo et al. (1981) present a similar mechanism for in vitro locomotion of granulocytes, we assume that blood cell locomotion in vivo and in vitro depends on similar molecular mechanisms: force generation by the cell, transmembraneous linkage between cytoskeletal and ECM elements, and membrane fluidity. The major difference in blood cell locomotion through a three-dimensional tissue or on a plane substratum would then be given by the distribution of contact sites, occurring around the cell periphery or limited to the ventral cell surface, respectively.  相似文献   

19.
Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.  相似文献   

20.
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号