首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virenomycin, a new crystalline antitumor antibiotic was isolated from the mycelium of Streptomyces virens. The antibiotic contained: C 64.87 per cent, H 5.66 per cent, methoxylic groups 9.5 per cent. The melting temperature was 255-260 degrees (dec.), [alpha]20D=-17 (c 0.142, chloroform). Virenomycin had a complex UV spectrum with lambdamax. 245 (677), 265 (453), 275 (542), 287 (507), 395 (222) nm. A chromofor fragment and carbohydrate (C7H14O5) were found in the methanolysis products. Virenomycin was close to antibiotic c B-21085 BY THe physico-chemical properties and differed from it in the character of the UV spectrum and the values of the specific absorption, as well as by the optic rotation in dimethyl sulphoxide and acetic acid.  相似文献   

2.
Gramicidin S is sorbed on the isolated membranes of granicidin-sensitive Micrococcus lysodeikticus strain. The antibiotic inhibits the membrane malate dehydrogenase within the temperature range of 9--42 degrees C, i.e. under conditions of gel and liquid-crystalline lipid state; however its effect at 10 degrees C is 10 times as low as is observed at 42 degrees C. The inhibitory effect of gramicidin S on malate dehydrogenase can be eliminated and the antibiotic can be removed from the membrane by an excess of different phospholipids. No transfer of the membrane components on exogenous phospholipids is observed. A prolonged (about 2 hrs, 30 degrees C) incubation of the membranes with gramicidin S results in irreversible inactivation of malate dehydrogenase, although the antibiotic can be still eliminated by an addition of phospholipid emulsions. It is suggested that gramicidin S forms complexes with phospholipids, in which the antibiotic is oriented to water. These complexes disturb the lipid-protein interactions, resulting in relaxation of the binding between the boundary phospholipids and proteins, in the loosening of near-protein lipid zones and simultaneous condensation of acid phospholipids in the whole membrane. Destruction of the lipid zone is accompanied by changes in the enzyme activity, by separation of lipid and protein regions and by transphase enzyme transitions (expulsion or immersion). A slow formation of secondary protein-protein associates may be irreversible.  相似文献   

3.
Derivatographic analysis of 5 samples of 6-beta-(hexahydro-IH-azepin-I-yl)methylenamino penicillanic acid was performed. In addition to the antibiotic the samples had water and acetone in their composition. No effects associated with changes in the physical and chemical state of the substance were observed on the derivatogramme of the samples containing 0.2 and 0.8 per cent of water up 140 degrees C. With a further increase in the temperature an exothermic effect was observed with maximum at 152--153 degrees C connected with melting and chemical degradation of the substance. The derivatogrammes of the samples containing 89--96.4 per cent of the antibiotic were characterized by an endothermic effect with minimum at 65 degrees C caused by evaporation of acetone and partially water from them and by an exothermic effect with maximum at 120 degrees C practically not accompanied by any change in the weight resulting from chemical interaction of the antibiotic with water. The study showed sensitivity of 6-beta-(hexahydro-IH-azepin-I-yl)methylenaminopenicillanic acid to the presence of even insignificant amounts of water in it, maximum elimination of which from the antibiotic is an important factor of increasing its stability.  相似文献   

4.
The crystal structure of methyl 3,6-dideoxy-beta-D-ribohexopyranoside monohydrate was determined by direct methods. Crystals are monoclinic, space group P2(1), with cell dimensions a=9.089(1), b=7.668(1), c=6.956(1) A, beta=101.12 degrees. The molecule adopts the 1C1 chair conformation. The same conformation was also found in both aqueous and chloroform solutions. The pyranose ring is only slightly distorted, and the consequences of this observation on antigen structure are discussed.  相似文献   

5.
Kanamycin, an antibiotic complex produced by Streptomyces kanamycetius isolated from Japanese soil, was described by Okami and Umezawa as early as 1957 and consists of three components: Kanamycin A (the major component), B, and C. The disulfate salt of kanamycin A [4-O-(6-amino-6-deoxy-alpha-d-glucopyranosyl)-6-O-(3-amino-3-deoxy-alpha-d-glucopyranosyl)-2-deoxystreptamine] is a broad-spectrum antibiotic that is used to treat gonorrhea, salmonella, tuberculosis, and many other diseases. Crystals of kanamycin A monosulfate monohydrate obtained from water are triclinic, space group P1, with a=7.2294(14), b=12.4922(15), c=7.1168(9), alpha=94.74(1), beta=89.16(1), gamma=91.59(1), V=640.2(2)A(3), micro(CuKalpha)=18.4cm(-1), FW 600.6, D(calc)=1.558g/cm(3), CAD-4 diffractometric data (2693 reflections, 25543sigma(I)), structure by shelx-86 and refined by full-matrix least squares to a final R value of 0.038. The wrong conformer had an R value of 0.043. Both of the d-glucose moieties are attached to the deoxystreptamine by alpha linkages. This absolute configuration agrees with the earlier determination by both chemical and X-ray methods with photographic data. The (phi,psi) values for the glycosidic linkages are 101.6 degrees , -121.1 degrees , 106.3 degrees , and -140.4 degrees , respectively. Kanamycin interacts with the ribosomal S12 protein to stabilize the codon-anticodon binding between mRNA and the aminoacyl tRNA and inhibits the elongation of peptide chains through a series of reactions resulting in the prevention of ribosomes from moving along mRNA.  相似文献   

6.
The crystal structure of Boc-(L-Phe-D-Phe)4-OMe has been determined by x-ray diffraction analysis. The peptide crystallizes in the triclinic system, space group P1 with a = 15.290 A, b = 15.163 A, c = 19.789 A, alpha = 102.49 degrees, beta = 96.59 degrees, gamma = 74.22 degrees, and Z = 2. The structure has been solved by coupling of the molecular replacement technique and expansion by tangent formula refinement of the set of known phases. Several cycles of Fourier calculations and least-squares refinement led to the location of 194 atoms of the two independent octapeptide chains and few molecules of cocrystallized solvent (chloroform, water, and methanol). The isotropic refinement converged to R = 0.13 for the 3077 "observed" reflections. The two independent octapeptide molecule form a dimer in the solid state: the two chains are associated by interstrand hydrogen bonds (12 of the type N-H ... O = C) with the formation of a double-stranded antiparallel right-handed -- beta 5.6-helix. These double helices can be represented as a cylinder with a hydrophilic inner core represented by the peptide units and an hydrophobic exterior constituted by the aromatic moieties. The dimensions of the cylinder are equal to those observed for Boc-(L-Val-D-Val)4-OMe. In the solid state the dimers pack with each other in an hexagonal fashion with the formation of layers; between the layers, solvent molecules fill empty spaces.  相似文献   

7.
The interaction between Nystatin and small unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, both in gel (T = 21 degrees C) and in liquid-crystalline (T = 45 degrees C) phases, was studied by steady-state and time-resolved fluorescence measurements by taking advantage of the intrinsic tetraene fluorophore present in this antibiotic. It was shown that Nystatin aggregates in aqueous solution with a critical concentration of 3 microM. The enhancement in the fluorescence intensity of the antibiotic was applied to study the membrane binding of Nystatin, and it was shown that the antibiotic had an almost fivefold higher partition coefficient for the vesicles in a gel (P = (1.4 +/- 0.1) x 10(3)) than in a liquid-crystalline phase (P = (2.9 +/- 0.1) x 10(2)). Moreover, a time-resolved fluorescence study was used to examine Nystatin aggregation in the membrane. The emission decay kinetics of Nystatin was described by three and two exponentials in the lipid membrane at 21 degrees C and 45 degrees C, respectively. Nystatin mean fluorescence lifetime is concentration-dependent in gel phase lipids, increasing steeply from 11 to 33 ns at an antibiotic concentration of 5-6 microM, but the fluorescence decay parameters of Nystatin were unvarying with the antibiotic concentration in fluid lipids. These results provide evidence for the formation of strongly fluorescent antibiotic aggregates in gel-phase membrane, an interpretation that is at variance with a previous study. However, no antibiotic self-association was detected in a liquid-crystalline lipid bilayer within the antibiotic concentration range studied (0-14 microM).  相似文献   

8.
The permeability of egg yolk lecithin (EYL) vesicles to Pr3+ has been measured by 31P nuclear magnetic resonance (nmr) spectroscopy. Measurable Pr3+ leakage into the internal aqueous compartment of EYL vesicles at ambient (21 degrees C) temperature required the presence of small (7--10 mol%) amounts of dicetyl phosphate (DCP). The permeability of DCP-containing vesicles is decreased by incorporation of sterol (cholesterol greater than ergosterol approximately 5.6-dihydroergosterol greater than zymosterol) into the lipid bilayer. Addition of the polyene macrolide antibiotic, nystatin, to DCP-containing EYL vesicles with and without sterol resulted in increased Pr3+ permeability at the three temperatures studied (21--37.5 degrees C). Permeability changes observed upon addition of nystatin to sterol-impregnated, DCP-containing vesicles varied with sterol structure: ergosterol approximately 5,6-dihydroergosterol greater than cholesterol approximately zymosterol. These results are compared with other polyene macrolide induced permeability changes on model and natural membrane systems. Permeability changes induced by nystatin in sterol-free EYL vesicles were generally greater than for comparable sterol-containing vesicles. This is attributed to a nonspecific interaction of the antibiotic with the latter vesicles.  相似文献   

9.
L-tyrosyl-L-tyrosine crystallizes as a dihydrate in the orthorhombic system, space group C222(1), with a = 12.105(2), b = 12.789(2), c = 24.492(3) A, Z = 8. The structure was solved by direct methods and refined to a final R-value of 0.059 for 1740 observed reflections. The molecule exists as a zwitterion, the peptide unit is trans planar, and the backbone torsion angles correspond to an extended conformation, with psi 1 = 149.4 degrees, phi 2 = -161.2 degrees, psi 2 = 158.3 degrees. The values of the side-chain torsion angles (chi 1, chi 2) are (-58.8 degrees, -63.1 degrees) for the first tyrosine and (-171.7 degrees, -116.5 degrees) for the second. The planes of the aromatic rings are nearly parallel (dihedral angle of 6.1 degrees), and their centers are separated by 10.9 A. The carboxyl plane forms a dihedral angle of 23.8 degrees with the plane of the peptide bond.  相似文献   

10.
In this work the susceptibility of mobile and cystic forms of Borrelia burgdorferi to hydroxychloroquine (HCQ) was studied. The minimal bactericidal concentration (MBC) of HCQ against the mobile spirochetes was >32 μg/ml at 37 °C, and >128 μg/ml at 30 °C. Incubation with HCQ significantly reduced the conversion of mobile spirochetes to cystic forms. When incubated at 37 °C, the MBC for young biologically active cysts (1-day old) was >8 μg/ml, but it was >32 μg/ml for old cysts (1-week old). Acridine orange staining, dark-field microscopy and transmission electron microscopy revealed that the contents of the cysts were partly degraded when the concentration of HCQ was ≥MBC. At high concentrations of HCQ (256 μg/ml) about 95% of the cysts were ruptured. When the concentration of HCQ was ≥MBC, core structures did not develop inside the cysts, and the amount of RNA in these cysts decreased significantly. Spirochetal structures inside the cysts dissolved in the presence of high concentrations of HCQ. When the concentration of HCQ was ≥MBC, the core structures inside the cysts were eliminated. These observations may be valuable in the treatment of resistant infections caused by B. burgdorferi, and suggest that a combination of HCQ and a macrolide antibiotic could eradicate both cystic and mobile forms of B. burgdorferi. Electronic Publication  相似文献   

11.
Crystallization of diphtheria toxin.   总被引:4,自引:0,他引:4  
Two new crystal forms (forms III and IV) have been grown of diphtheria toxin (DT), which kills susceptible cells by catalyzing the ADP-ribosylation of elongation factor 2, thereby stopping protein synthesis. Forms III and IV diffract to 2.3 A and 2.7 A resolution, respectively. Both forms belong to space group C2; the unit cell parameters for form III are a = 107.3 A, b = 91.7 A, c = 66.3 A and beta = 94.7 degrees and those for form IV are a = 108.3 A, b = 92.3 A, c = 66.1 A and beta = 90.4 degrees. Both forms have one protein chain per asymmetric unit with the dimeric molecule on a twofold axis of symmetry. Form IV is exceptional among all crystal forms of DT in that it can be grown reproducibly. Thus the form IV crystals should yield a crystallographic structure giving insight into the catalytic, receptor-binding and membrane-insertion properties of DT.  相似文献   

12.
Joulean temperature jump from 4--7 degrees to 10--25 degrees C completed in 0.2 ms induced biphasic rise of tension in suspended in the air segments of chemically skinned Ca-activated (pCa = 5.5 divided by 6) muscle fibres of the frog. Amplitudes of the 1st and 2nd phases grew up to 30--40% and 60--70% of the initial tension correspondingly when the amplitude of temperature jump increased to 17--21 degrees C. The time constant of the 1st phase (1.3--0.5 ms) decreased with temperature (Q10 = 1.8). The time constant of the 2nd phase was about 10 ms.  相似文献   

13.
The crystal structure of L-chiro-inositol is monoclinic, P21, with a = 6.867(3), b = 9.133(4), c = 6.217(3) A, beta = 106.59(4) degrees, Z = 2. The structure was solved by using MULTAN, and refined to R = 0.028 for 1065 intensities observed with Ni-filtered MoK alpha radiation. The molecule has the expected chair conformation, with puckering parameters Q = 0.561 A, theta = 4.4 degrees, phi = 51.2 degrees. The non-hydrogen molecular symmetry is close to C2, with deviations of less than 0.07 A from a weighted fit. The intramolecular hydrogen-bonding forms infinite chains which are cross-linked through the weaker component of a three-center bond. The C-C bond lengths range from 1.515 to 1.528 A, and the C-O bond lengths from 1.418 to 1.436 A. The C-C-C angles range from 109.7 to 113.1 degrees, and the C-C-O angles from 106.5 to 112.0 degrees.  相似文献   

14.
In our attempts to design crystalline alpha-helical peptides, we synthesized and crystallized GAI (C11H21N3O4) in two crystal forms, GAI1 and GAI2. Form 1 (GAI1) Gly-L-Ala-L-Ile (C11H21N3O4.3H2O) crystals are monoclinic, space group P2(1) with a = 8.171(2), b = 6.072(4), c = 16.443(4) A, beta = 101.24(2) degrees, V = 800 A3, Dc = 1.300 g cm-3 and Z = 2, R = 0.081 for 482 reflections. Form 2 (GAI2) Gly-L-Ala-L-Ile (C11H21N3O4.1/2H2O) is triclinic, space group P1 with a = 5.830(1), b = 8.832(2), c = 15.008(2) A, alpha = 102.88(1), beta = 101.16(2), gamma = 70.72(2) degrees, V = 705 A3, Z = 2, Dc = 1.264 g cm-3, R = 0.04 for 2582 reflections. GAI1 is isomorphous with GAV and forms a helix, whereas GAI2 does not. In GAI1, the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an incipient alpha-helix. GAI2 imitates a cyclic peptide and traps a water molecule. The conformation angles chi 11 and chi 12 for the side chain are (-63.7 degrees, 171.1 degrees) for the helical GAI1, and (-65.1 degrees, 58.6 degrees) and (-65.0 degrees, 58.9 degrees) for the two independent nonhelical molecules in GAI2; in GAI1, both the C gamma atoms point away from the helix, whereas in GAI2 the C gamma atom with the g+ conformation points inward to the helix and causes sterical interaction with atoms in the adjacent peptide plane. From these results, it is clear that the helix-forming tendencies of amino acids correlate with the restrictions of side-chain rotamer conformations. Both the peptide units in GAI1 are trans and show significant deviation from planarity [omega 1 = -168(1) degrees; omega 2 = -171(1) degrees] whereas both the peptide units in both the molecules A and B in GAI2 do not show significant deviation from planarity [omega 1 = 179.3(3) degrees; omega 2 = -179.3(3) degrees for molecule A and omega 1 = 179.5(3) degrees; omega 2 = -179.4(3) degrees for molecule B], indicating that the peptide planes in these incipient alpha-helical peptides are considerably bent.  相似文献   

15.
The conformations of chlamydocin and cyclo (Ala-Aib-Phe-D-Pro) (Ala4-chlamydocin) in chloroform have been investigated by nuclear magnetic resonance, infrared and circular dichroism spectroscopy. The data obtained from these experiments establish an all transoid, bis gamma-turn conformation for both compounds in chloroform with the following torsional angles (+/- 20 degrees): Ala4-chlamydocin: Aib, phi + 60 degrees, psi - 50 degrees; omega + 160 degrees; Phe phi - 120 degrees, psi + 120 degrees, omega - 160 degrees; D-Pro phi + 60 degrees, psi - 55 degrees, omega + 160 degrees; Ala phi - 110 degrees, psi + 110 degrees, omega - 160 degrees. Chlamydocin adopts a closely related conformation in neat chloroform. Nuclear Overhauser Effect (NOE) data are utilized to assign amide bond geometries in the cyclic tetrapeptide ring system.  相似文献   

16.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

17.
The crystal structure of the beta'-2 form of a mixed chain triacylglycerol (TAG), 1,2-dipalmitoyl-3-myristoyl-sn-glycerol (PPM), was determined to a final reliability factor of 0.074. This work is the first to resolve the atomic-level structure of the beta' polymorph, which is of the highest functionality among multiple polymorphs in asymmetric TAG. In particular, fat crystals present in food emulsions are in beta', whose transformation into beta causes deterioration in their physical properties. beta'-2, one of the two beta' forms of PPM, forms a monoclinic unit cell with a space group of C2; Z = 8, a = 16.534(5) A, b = 7.537(2) A, c = 81.626(9) A; beta = 90.28(2) degrees, V = 10171(3) A(3), density = 1.018 g/cm(3), and mu = 4.96 cm(-1). The following characteristics were obtained: 1) two asymmetric units, named A and B, form a hybrid-type orthorhombic perpendicular subcell; 2) the two asymmetric units reveal different glycerol conformations: trans for sn-1 palmitic acid and sn-2 palmitic acid, but gauche for sn-3 myristic acid in A; and trans for sn-2 palmitic acid and sn-3 myristic acid, but gauche for sn-1 palmitic acid in B; 3) a unit lamellae reveals a four-chain-length structure consisting of two double-layer leaflets; 4) the two double-layer leaflets are combined end-by-end in a unit lamellae; and 5) the chain axes are alternatively inclined against the lamellar interface. -- Sato, K., M. Goto, J. Yano, K. Honda, D. R. Kodali, and D. M. Small. Atomic resolution structure analysis of beta' polymorph crystal of a triacylglycerol: 1,2-dipalmitoyl-3-myristoyl-sn-glycerol. J. Lipid Res. 2001. 42: 338--345.  相似文献   

18.
Dilauroylphosphatidylethanolamine dispersion forms a crystalline phase at physiological pH and temperature and in the presence of excess water. This phenomenon was observed and studied by differential scanning calorimetry, scanning densitometry and X-ray diffraction. The crystalline phase is stable at pH 5.5-9.5 and below 40 degrees C. The crystalline phase formed at pH 5.5 and pH 9.5 index according to orthorhombic cells with a = 9.41, b = 8.15, c = 46.0 and a = 9.33, b = 8.05, c = 45.8 (A), respectively. Around 43 degrees C, the crystalline phase is transformed into a multilayer liquid crystal phase. Cooling from 44 degrees C results in the disappearance of the original transition at 43 degrees C and the appearance of a second transition at around 30 degrees C. Below 30 degrees C the lipid forms a gel phase. This gel phase is metastable at pH 5.5 and a crystalline phase may be recovered from it by dispersing or aging methods. Suspensions of dilauroylphosphatidylethanolamine show similar phase transition behaviour at pH 5.5 and pH 9.5, although the transitions are somewhat broader at the higher pH. The thermotropic phase behaviour of dilauroylphosphatidylethanolamine dispersions may be governed by changes in hydration.  相似文献   

19.
An optimization procedure using artificial neural networks was developed to determine the optimal combination of parameters, such as medium culture, initial pH, temperature and time of fermentation for maximal trypanocidal metabolites production by Aspergillus fumigatus. A data set of 81 experiments was carried out and an artificial neural network was trained to identify the optimal conditions for this process. Good correlation was obtained between the experimental and predicted values of lysis of the trypomastigote forms of Trypanosoma cruzi (r2 = 0.9990). The simulations of fermentation performance were undertaken on combinations of input variables and the highest level of activity against T. cruzi was obtained from the chloroform extract of the modified Jackson medium culture, initial pH of 6.0, incubated at 40 degrees C for 144 h. It displayed lysis of 95% of the trypomastigote forms of T. cruzi and the red blood cells remained normal.  相似文献   

20.
Characterization of poly-3-hydroxybutyric acid (PHB) and poly-3-hydroxybutyric-co-valeric acid (PHBV, 13% valerate) in chloroform was performed using size exclusion chromatography coupled to a multi-angle light scattering detector (SEC-MALS). Absolute molar mass averages, molar mass distribution, and the radius of gyration were determined. Three sample preparation methods were examined: dissolution in chloroform (1) at room temperature, (2) at 60 degrees C, and (3) after thermal pretreatment of samples (annealing at 180 degrees C with subsequent quenching in liquid nitrogen). Dissolution at 60 degrees C and dissolution of thermally pretreated samples gave molecularly dissolved PHB and PHBV. At 60 degrees C using acid free chloroform, there was no indication of degradation for up to 120 min dissolution time, whereas thermal degradation of polymers did take place during annealing at 180 degrees C. The degradation rate constants for number and weight average degree of polymerization at 180 degrees C were slightly higher for PHB (5.19 x 10(-5) min(-1), 4.95 x 10(-5) min(-1)) than for PHBV (4.99 x 10(-5) min(-1), 4.54 x 10(-5) min(-1)). The dependence of the radii of gyration on molar mass showed that both polymers form random coils in chloroform. The relationship between the absolute molar masses and relative SEC results was determined. DSC and NMR characterization also gave evidence of the progress of degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号