首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
Cultured steroidogenic cells derived from the adrenal glands of duck embryos were used to study changes in the distribution of actin associated with the corticotropic responsiveness. Actin-containing components were identified by rhodamine-phalloidin staining. The actin in most of the unstimulated cells occurred as stress fibers that either ran parallel throughout the cell or were present as domains of parallel fibers at angles to one another. When incubated in Krebs-Henseleit buffer containing 1–24 ACTH, the cells released approximately equal amounts of corticosterone and aldosterone. Incubation of the cells in buffer containing cytochalasin D caused the cells to lose their stress fibers, and the actin became distributed at the periphery in what appeared to be fragments of stress fibers and clumps of fibrous material in the central cytoplasm. Although cytochalasin D did not affect the basal output of corticosterone and aldosterone, the 1–24 ACTH-induced rates of both hormones were suppressed significantly. After the cells had been washed in unadulterated buffer, the normal distribution of actin stress fibers was restored and the cells responded normally when incubated in buffer containing 1–24 ACTH. These results suggest that the actin components of the cytoskeleton are important determinants of corticotropin-induced steroidogenic responsiveness.  相似文献   

2.
The control of cytoskeletal actin and exocytosis was examined in intact and digitonin-permeabilized chromaffin cells. Cytoskeletal actin was assayed by determining the actin content of Triton-insoluble cytoskeletons. The secretagogues nicotine, high K+ and Ba2+ resulted in a rapid reduction in the amount of actin associated with the cytoskeleton. The effect of nicotine but not high K+ on cytoskeletal actin was independent of external Ca2+ and the reduction in cytoskeletal actin was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate suggesting a role for protein kinase C. In digitonin-permeabilized cells micromolar calcium produced both catecholamine secretion and a reduction in cytoskeletal actin. The reduction in cytoskeletal actin was transient. Secretion was enhanced by the GTP analogue guanosine 5'-(3-O-thio)triphosphate and the analogue also reduced cytoskeletal actin at low calcium levels. The effects of guanosine 5'-(3-O-thio)triphosphate were inhibited by the phospholipase C inhibitor neomycin and were mimicked by 12-O-tetradecanoylphorbol-13-acetate. An additional GTP analogue, guanyl-5'-yl imidodiphosphate, had no effect on cytoskeletal actin. These results provide further evidence for a requirement for reorganisation of cortical actin in the secretory processes and suggest that the reduction in actin associated with the cytoskeleton may be mediated by protein kinase C and/or calcium in intact and permeabilized chromaffin cells.  相似文献   

3.
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed.  相似文献   

4.
Summary The adrenal steroidogenic tissue of the neonatal mallard duckling is differentiated into an outer subcapsular zone where the cells contain many large lipid droplets, and an inner zone in which the cells appear to contain less lipid. The cells in both zones contain numerous mitochondria and an abundance of smooth endoplasmic reticulum, and their interdigitating plasma membranes possess many filipodia, coated pits and desmosome-like junctions. Islands of chromaffin cells are distributed throughout the steroidogenic tissue. Two types of chromaffin cell are present, one with vesicles containing densely staining material and the other more lightly staining material. Non-myelinated preganglionic fibers synapse with the chromaffin cells and the axonal terminals contain two types of dense-cored vesicles as well as acetylcholine-containing vesicles. The basal rates of corticosterone (B) and aldosterone (Aldo) release from tissue superfused with buffer containing no secretogogue were low and almost equal (B: Aldo=1.25); the corresponding rate of deoxycorticosterone (DOC) release was less than one-fortieth of the rates of B and Aldo release. The addition of 1–24 ACTH to the medium caused the rate of release of each hormone to increase as a semi-logarithmic function of the concentration and the induced increase in B release was always significantly higher than that of Aldo (B: Aldo=4.8). The corticotropin-induced rates of B and Aldo, but not DOC, release reflected do novo hormone synthesis. Norepinephrine, epinephrine and dopamine each suppressed the basal rates of B and Aldo release, but had no effect when the medium contained 1–24 ACTH. Acetylcholine (ACh) similarly suppressed the basal rates of hormone release, and neither suppressed nor enhanced the responses to medium containing 1–24 ACTH. The suppressive effects of the catecholamines and ACh were not dose-related. [Asp1, Val5] angiotensin II induced significant semi-logarithmic dose-dependent increases in Aldo synthesis but had no effect on the release of either B or DOC.This work was supported by grants to J. Cronshaw and W.N. Holmes from the University of California Committee on Research and the National Science Foundation (DIR-8820923), Washington, D.C., USA  相似文献   

5.
The cytoskeleton of senescent cells was systematically studied using senescent and young fibroblasts. In the cell senescence, skin fibroblasts extraordinarily produced vimentin in contrast to actin and tubulin, which were down-regulated. Among the focal adhesion proteins, paxillin and c-Src decreased also. Senescent cells developed a long and dense vimentin network, long and thin actin fibers, and numerous small focal contact sites, which contrasted with young cells with short and thick actin stress fibers and prominently large focal adhesions. Noticeably, senescent fibroblasts markedly produced p53 molecules and anchored them to vimentin-cytoskeleton in the cytoplasm. The vimentin-anchored p53 was detected with antibody PAb240 that specifically recognizes a conformation variant of p53. A GFP-tagged wild type p53 cDNA was expressed by transfection and shown also to be retained in the cytoplasm in senescent cells, suggesting that p53 is structurally modified to be recognized by PAb240 and anchored to vimentin filaments. We discuss the correlation of the marked alteration of cytoskeleton and senescent cells diminished proliferation and migration, as well as the significance of cytoskeletal anchorage of tumor suppressor p53.  相似文献   

6.
Effects of electric fields on fibroblast contractility and cytoskeleton   总被引:2,自引:0,他引:2  
We used silicone rubber substrata and fluorescent staining of cytoskeletal components to study the mechanisms by which electrical voltage gradients cause reorientation of embryonic chick fibroblasts in tissue culture. No evidence was found for a direct stimulation of cell contractility, either parallel or perpendicular to the voltage gradient. Instead, there was a gradual weakening in cell contractility in the axis parallel to this gradient, accompanied by progressive retraction of lamellae oriented along this axis, apparently due to selective weakening of cell-substratum adhesions. The cells then elongated perpendicular to the electric field, and strengthened their contractility in that axis. Fluorescence microscopy showed that cytoplasmic actin stress fibers and microtubules oriented perpendicular to the imposed voltage gradient. Many more cases were observed in which cell morphology had reoriented, but the actin fibers had not, as compared to the converse (cytoskeleton oriented, but no morphology). This disparity further supports the interpretation that the redirection of cell contractility is a consequence of morphological reorientation, rather than its cause. We also studied the effects of reversing the polarity of the electric fields at constant intervals (of as long as 1 minute). Fibroblasts failed to orient in response to such alternating fields, even after long exposure, but these same cells did reorient in response to pulsed currents in a consistent direction separated by "rest periods" (with no current). This combination of results is more consistent with an electrophoretic mechanism than with one depending on voltage-induced changes in membrane permeabilities.  相似文献   

7.
Exposure to hypoxia causes structural changes in the endothelial cell layer that alter its permeability and its interaction with leukocytes and platelets. One of the well characterized cytoskeletal changes in response to stress involves the reorganization of the actin cytoskeleton and the formation of stress fibers. This report describes cytoskeletal changes in pulmonary microvascular endothelial cells in response to hypoxia and potential mechanisms involved in this process. The hypoxia-induced actin redistribution appears to be mediated by components downstream of MAPK p38, which is activated in pulmonary endothelial cells in response to hypoxia. Our results indicate that kinase MK2, which is a substrate of p38, becomes activated by hypoxia, leading to the phosphorylation of one of its substrates, HSP27. Because HSP27 phosphorylation is known to alter actin distribution in response to other stimuli, we postulate that it also causes the actin redistribution observed in hypoxia. This notion is supported by the observations that similar actin redistribution occurs in cells overexpressing constitutively active MK2 or phosphomimicking HSP27 mutant. Overexpressing dominant negative MK2 blocks the effects of hypoxia on the actin cytoskeleton. Taken together these results indicate that hypoxia stimulates the p38-MK2-HSP27 pathway leading to significant alteration in the actin cytoskeleton.  相似文献   

8.
The integrin-linked kinase (ILK) serves as an adapter protein to link the cytoplasmic domains of integrins with cytoskeletal components. Organization of the actin cytoskeleton is strongly influenced by the small GTPase RhoA, which also regulates gene expression. To investigate the impact of ILK deficiency on RhoA-mediated signaling we used ILK-deficient fibroblasts. The cytoskeleton of ILK (-/-) cells was characterized by less organized F-actin fibers, compared to wild type mouse fibroblasts. Stimulation of the cells with lysophosphatidic acid (LPA) or the microtubule disrupting agent colchicine increased polymerization of F-actin stress fibers in ILK (+/+) cells, whereas ILK (-/-) cells showed a network of short thin cortical actin fibers, cell rounding and finally detachment from the surface of the culture plates. The structural changes were primarily attributable to the activation of RhoA in both cell types. ILK deficiency also affected gene expression. The basal levels of several proteins related to fibroblast differentiation, such as connective tissue growth factor (CTGF), thrombospondin 1 and alpha smooth muscle actin, were reduced in ILK (-/-) cells. However, induction of CTGF expression by LPA or colchicine was comparable in ILK (+/+) and ILK (-/-) cells. Furthermore, stimulation of CTGF or thrombospondin by TGFbeta was not reduced by ILK deficiency. Inhibition of the RhoA-associated kinase or overexpression of dominant negative RhoA reduced the stimulated CTGF expression indicative of a role for RhoA signaling in CTGF expression. Taken together, ILK is involved in RhoA-dependent reorganization of the actin cytoskeleton, whereas activation of RhoA and RhoA-mediated gene expression is independent of ILK.  相似文献   

9.
To clarify when the cholinergic receptor-mediated secretion mechanism of developing adrenal chromaffin cells is expressed and becomes functional, morphological changes and intracellular calcium dynamics were studied by immunohistochemistry, electron microscopy, and Fura-2 digital image analysis. From embryonic day 14 to 16, adrenal medullary cells were immunoreactive to noradrenaline-synthesizing enzyme (dopamine β-hydroxylase) but not to adrenaline-synthesizing enzyme (phenylethanolamine N-methyltransferase). These cells contained either no granules or just a few granules of high electron density. Exocytotic figures were rarely observed in cells of the control or in cells after carbamylcholine stimulation. Nerve fibers in the adrenal medulla contained either no clear vesicles or very few. Neither methacholine nor nicotine caused a change of intracellular Ca2+ in most chromaffin cells. From embryonic day 18 to 20, chromaffin cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase and they contained relatively numerous secretory granules. Exocytotic figures were often seen in cells after carbamylcholine stimulation. The intra-adrenal nerve fibers contained numerous clear vesicles and a few dense-cored vesicles. Methacholine caused no rise of intracellular Ca2+, but nicotine induced a low to relatively high rise in many cells. From postnatal day 2 or 3 to postnatal week 1, numerous cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase, whereas some cells were reactive to dopamine β-hydroxylase alone. Chromaffin cells were divisible into noradrenaline cells and adrenaline cells based on the ultrastructural features of their granules. Methacholine induced a moderate rise of intracellular Ca2+ and nicotine caused a high rise in many chromaffin cells, whereas, in some chromaffin cells, methacholine induced no rise of intracellular Ca2+ and nicotine induced a high rise. These results suggest that morphological changes of the developing cells and the intra-adrenal nerve fibers are related to the expression of a cholinergic receptor-mediated secretion mechanism and that this mechanism via a nicotinic receptor-mediated Ca2+ signaling pathway precedes the muscarinic receptor-mediated one during development.  相似文献   

10.
Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.  相似文献   

11.
Triton-insoluble cytoskeletons were isolated from Dictyostelium discoideum AX3 cells prior to and following stimulation with 2'deoxy cyclic adenosine monophosphate (cAMP). Temporal changes in the content of actin and a 120,000 dalton actin-binding protein (ABP-120) in cytoskeletons following stimulation were monitored. Both actin and ABP-120 were incorporated into the cytoskeleton at 30-40 seconds following stimulation, which is cotemporal with the onset of pseudopod extension during stimulation of amoebae with chemoattractants. Changes in the content of total cytoskeletal protein and cytoskeletal myosin were determined under the same experimental conditions as controls. These proteins exhibited different kinetics from those of cytoskeletal ABP-120 and actin following the addition of 2'deoxy cAMP. The authors concluded that the association of ABP-120 with the cytoskeleton is regulated during cAMP signalling. Furthermore, these results indicate that ABP-120 is involved in cross-linking newly assembled actin filaments into the cytoskeleton during chemoattractant-stimulated pseudopod extension.  相似文献   

12.
Patterning of the membrane cytoskeleton by the extracellular matrix   总被引:2,自引:0,他引:2  
The extracellular matrices of different tissues contain components which affect the migration, morphology and differentiation of many types of cells. These forms of cell behavior often involve dramatic changes in cytoskeletal organization. Extracellular matrix components are recognized by specific cell surface receptors which span the membrane and interact with the actin cytoskeleton. In cultured cells, the matrix receptors are concentrated in sites of cell attachment called focal adhesions. Information that is conveyed from the extracellular matrix to the cytoskeleton may involve matrix components, cell surface receptors, as well as the proteins at the cytoplasmic face of the focal adhesion which link the receptors to the actin cytoskeleton.  相似文献   

13.
P Mattson  J Kowal 《Tissue & cell》1983,15(5):805-821
We have demonstrated previously that the steroidogenic activity of ACTH on cultured adrenal tumor cells is associated with cell rounding and a rearrangement of microfilaments. Cytochalasin B (CB) also induces cell rounding, but changes the conformation of microfilaments and severely inhibits steroidogenesis. ACTH and CB may have different modes of action on the contractile machinery which are related to their opposing actions on steroidogenesis. To investigate this possibility further, we have examined the reversibility of the morphological and functional effects of these agents. Cultures were incubated for 1 hr, with and without ACTH (10 microU/ml of media), or with CB (50 micrograms/ml), or with both agents simultaneously. After a media wash, the cultures were incubated for 1 hr, with and without ACTH. The steroid production of the cells during pre- and post-washout incubations was determined, and some cultures were fixed for electron microscopy at the end of both incubation periods. The three- to ten-fold increases in steroidogenic activity of ACTH-stimulated cells declined during recovery incubations, but remained well above basal values. These cells nearly reflattened and began to regain stress fibers which had been 'pulled apart'. The 'washed out' ACTH-stimulated cells were often refractory to restimulation. Cells recovering from CB also reflattened. Masses of filamentous felt induced by the drug disappeared from the cytoplasm, lost microvilli reappeared and stress fibers reformed. The 20-50% inhibition of basal steroidogenesis by CB was completely reversed. When ex-CB-treated cells were incubated with ACTH, their morphology and steroid production were typical of acutely stimulated cells. The recovery behavior of cells incubated with ACTH and CB simultaneously reflected the observation that there were cell-specific responses to one agent or the other during initial incubations. The persistence of heightened steroidogenic activity following a washout of ACTH and the rapid reversal of the effects of CB strongly support the concept that regulated actomyosin interactions are an integral part of the steroidogenic process.  相似文献   

14.
Peptidylglycine α-amidating monooxygenase (PAM) is an essential enzyme that catalyzes the COOH-terminal amidation of many neuroendocrine peptides. The bifunctional PAM protein contains an NH2-terminal monooxygenase (PHM) domain followed by a lyase (PAL) domain and a transmembrane domain. The cytosolic tail of PAM interacts with proteins that can affect cytoskeletal organization. A reverse tetracycline-regulated inducible expression system was used to construct an AtT-20 corticotrope cell line capable of inducible PAM-1 expression. Upon induction, cells displayed a time- and dose-dependent increase in enzyme activity, PAM mRNA, and protein. Induction of increased PAM-1 expression produced graded changes in PAM-1 metabolism. Increased expression of PAM-1 also caused decreased immunofluorescent staining for ACTH, a product of proopiomelanocortin (POMC), and prohormone convertase 1 (PC1) in granules at the tips of processes. Expression of PAM-1 resulted in decreased ACTH and PHM secretion in response to secretagogue stimulation, and decreased cleavage of PC1, POMC, and PAM. Increased expression of a soluble form of PAM did not alter POMC and PC1 localization and metabolism. Using the inducible cell line model, we show that expression of integral membrane PAM alters the organization of the actin cytoskeleton. Altered cytoskeletal organization may then influence the trafficking and cleavage of lumenal proteins and eliminate the ability of AtT-20 cells to secrete ACTH in response to a secretagogue.  相似文献   

15.
Cell movement and resistance to mechanical forces are largely governed by the cytoskeleton, a three-dimensional network of protein filaments that form viscoelastic networks within the cytoplasm. The cytoskeleton underlying the plasma membrane of most cells is rich in actin filaments whose assembly and disassembly are regulated by actin binding proteins that are stimulated or inhibited by signals received and transmitted at the membrane/cytoplasm interface. Inositol phospholipids, or phosphoinositides, are potent regulators of many actin binding proteins, and changes in the phosphorylation of specific phosphoinositide species or in their spatial localization are associated with cytoskeletal remodeling in vitro. This review will focus on recent studies directed at defining the structural features of phosphoinositide binding sites in actin binding proteins and on the influence of the physical state of phosphoinositides on their ability to interact with their target proteins.  相似文献   

16.
Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) were subjected to in vitro osteogenic differentiation using a novel combination of signaling molecules including BMP-2 and purmorphamine. Differentiation outcomes were assessed by calcein staining and by microscopic examination of the cytoskeleton. Calcein staining showed appreciable degree of calcium mineralization in cell culture, and changes in the morphological attributes of differentiating cells were observed vis-a-vis the actin cytoskeleton. Finally, positive calcein staining, altered cytoskeletal profile, and stress fiber formation in treated cells demonstrated, for the first time, a potentially synergistic interplay between BMP-2 and the hedgehog agonist, purmorphamine. This study lends support to the notion of combining small doses of potent molecules that can act as safe, less toxic inducers of osteogenic differentiation of human umbilical cord mesenchymal stem cells with respect to bone regeneration.  相似文献   

17.
There have been many studies on the localization by immunocytochemistry of cytoskeletal proteins in cells cultured in vitro. However, the distribution of cytoskeleton in cells in situ has yet to be elucidated. In the present study we developed an immunohistochemical method for visualizing tubulin and actin in rat hepatocytes in situ, using a perfusion extraction-fixation procedure, in which the liver was perfused through the portal vein with a nonionic detergent to make the plasma membranes permeable to soluble substances, followed by a fixative to preserve cytoskeletal structure. Using the immunogold and peroxidase-antiperoxidase (PAP) staining procedures, we found that in hepatocytes in situ, tubulin was localized in cytoplasmic filamentous networks and in spindle fibers, as in hepatocytes and other cells in vitro. On the other hand, the distribution of actin in hepatocytes in situ was considerably different from that in well-spread hepatocytes and other cells cultured in vitro. In hepatocytes in situ, actin did not form any stress fibers, but was distributed preferentially under the plasma membrane, especially around the bile canaliculi. The perfusion extraction-fixation procedure could be adapted to visualize cytoskeleton in other tissues.  相似文献   

18.
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.  相似文献   

19.
Bovine chromaffin cells normally express mostly nonphosphorylated neurofilaments (NFs) in primary culture, and thus provide a unique model for examining the kinase capable of phosphorylating these proteins in situ. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) which activates protein kinase C induced NF phosphorylation both in the perikaryon and in neuritic extensions of neurite-bearing cells as judged by immunofluorescence using monoclonal anti-NF antibodies which distinguish between phosphorylated and nonphosphorylated epitopes. NF phosphorylation was suppressed by pretreating the cells with sphingosine, an inhibitor of protein kinase C, and was not observed in the presence of the phorbol ester. 4 alpha-phorbol-12,13-didecanoate (PDD) which does not activate protein kinase C, arguing that protein kinase C was responsible for the observed phosphorylation. Immunochemical analysis of cytoskeletal extracts indicated that TPA induced a 3 to 6-fold increase in NF phosphorylation and showed that the 150,000 dalton NF subunit was the principal protein kinase C substrate. In addition to the TPA effect on NF phosphorylation, TPA provoked a reversible membrane ruffling, which eventually resulted in a flattening of chromaffin cells. These morphological alterations were linked with actin patching and the development of stress fibers, respectively. Sphingosine blocked the TPA-induced membrane ruffling and actin patching, and these phenomena were correlated with increased protein kinase C activity. In contrast, there was no change in the localization of microtubules and NFs. The actin reorganization and NF phosphorylation induced by TPA suggest that at least two distinct proteins of the neuronal cytoskeleton are susceptible to the influence of protein kinase C activation. It remains to be established whether protein kinase C plays a role in the regulatory mechanism controlling actin organization and neurofilament phosphorylation during neuronal differentiation.  相似文献   

20.
Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号