首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

2.
Three new yeast species, Candida kashinagacola (JCM 15019(T) = CBS 10903(T)), C. pseudovanderkliftii (JCM 15025(T) = CBS 10904(T)), and C. vanderkliftii (JCM 15029(T) = CBS 10905(T)) are described on the basis of comparison of nucleotide sequences of large subunit ribosomal DNA D1/D2 region (LSU rDNA D1/D2). The nearest assigned species of the three new species was Candida llanquihuensis. Candida kashinagacola and C. pseudovanderkliftii differed from C. llanquihuensis by 3.8% nucleotide substitution of the region, while C. vanderkliftii did by 4.4%. Three new species differed in a number of physiological and growth characteristics from any previously assigned species and from one another. A phylogenetic tree based on the sequences of LSU rDNA D1/D2 showed that these new species together with Candida sp. ST-246, Candida sp. JW01-7-11-1-4-y2, Candida sp. BG02-7-20-001A-2-1 and C. llanquihuensis form a clade near Ambrosiozyma species. The new species did not assimilate methanol as a sole source of carbon, which supported the monophyly of these non methanol-assimilating species which are closely related to the methylotrophic yeasts. Candida kashinagacola was frequently isolated from the beetle galleries of Platypus quercivorus in three different host trees (Quercus serrata, Q. laurifolia and Castanopsis cuspidata) located in the sourthern part of Kyoto, Japan, thus indicating that this species may be a primary ambrosia fungus of P. quercivorus. On the other hand, C. pseudovanderkliftii and C. vanderkliftii were isolated only from beetle galleries in Q. laurifolia. Candida vanderkliftii was isolated from beetle gallery of Platypus lewisi as well as those of P. quercivorus. Candida pseudovanderkliftii and C. vanderkliftii are assumed to be auxiliary ambrosia fungi of P. quercivorus.  相似文献   

3.
Taxonomic studies were performed on three strains isolated from Cheonho reservoir in Cheonan, Korea. The isolates were Gram-negative, aerobic, rod-shaped, non-motile, catalase-positive, and oxidase-positive. Colonies on solid media were cream-yellow, smooth, shiny, and circular. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these strains belong to the genus Flavobacterium. The strains shared 98.6–99.4% sequence similarity with each other and showed less than 97% similarity with members of the genus Flavobacterium with validly published names. The DNA-DNA hybridization results confirmed the separate genomic status of strains ARSA-42T, ARSA-103T, and ARSA-108T. The isolates contained menaqui-none-6 as the predominant menaquinone and iso-C15:0, iso-C15:0 3-OH, iso-Ci15:1 G, and iso-C16:0 3-OH as the major fatty acids. The genomic DNA G+C content of the isolates were 31.4–33.2 mol%. According to the phenotypic and genotypic data, these organisms are classified as representative of three novel species in the genus Flavobacterium, and the name Flavobacterium koreense sp. nov. (strain ARSA-42T =KCTC 23182T =JCM 17066T =KACC 14969T), Flavobacterium chungnamense sp. nov. (strain ARSA-103T =KCTC 23183T =JCM 17068T =KACC 14971T), and Flavobacterium cheonanense sp. nov. (strain ARSA-108T =KCTC 23184T =JCM 17069T =KACC 14972) are proposed.  相似文献   

4.
A Gram-positive aerobic rod-shaped non-motile bacterium designated A23T was isolated from bamboo extract that had been used to remove odor and was characterized to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain A23T belongs to the phylum Actinobacteria. The highest degree of sequence similarities was determined to be with Leucobacter salsicius M1-8T (96.7%), Leucobacter exalbidus K-540BT (96.4%), Leucobacter chromiireducens subsp. chromiireducens L-1T (96.4%), Leucobacter komagatae IFO 15245T (96.4%) and Leucobacter aerolatus Sj10T (96.4%). Chemotaxonomic data revealed that strain A23T possesses menaquinone MK11, and its cell wall peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine, glutamic acid and γ-aminobutyric acid. The polar lipid profile of strain A23T contained diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The predominant fatty acids were iso-C16:0 (31.5%), anteiso-C15:0 (43.2%) and anteiso-C17:0 (13.9%), all of which corroborated the assignment of the strain to the genus Leucobacter. Based on these data, A23T (=KEMC 551-022T = JCM 17538T) should be classified as the type strain for a novel Leucobacter species, for which the name Leucobacter margaritiformis sp. nov. is proposed.  相似文献   

5.
Fu Y  Li Q  Liu K  Xu Y  Wang Y  Jiao N 《Current microbiology》2011,63(6):561-567
A Gram-negative, short ovoid- to coccus-shaped, aerobic, motile, non-spore-forming bacterium (designated strain JLT1679T) was isolated from West Pacific. Cells have subpolar flagella, dividing by binary fission. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to branch of the evolutionary radiation occupied by the genus Paracoccus, family Rhodobacteraceae, order Rhodobacterales, class Alphaproteobacteria. The closest neighbours were Paracoccus stylophorae KTW-16T (97.1% similarity), Paracoccus caeni strain MJ17T (96.5% similarity), Paracoccus homiensis DD-R11T (96.0% similarity) and Paracoccus alcaliphilus JCM 7364T (95.8% similarity). The predominant cellular fatty acids of strain JLT1679T were summed feature 8 (18:1ω6c) (38.8%), C18:0 (27.7%), C16:0 (22.5%), and significant amounts of C18:1 ω9c (5.1%), C14:0 (3.8%) and C18:1 ω7c 11-methyl (2.1%), were present. The predominant respiratory ubiquinone of strain JLT1679T was Q-10 and the DNA G + C content of strain JLT1679T was 59.5 mol%. The polar lipid profile consisted of a mixture of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The isolate was distinguishable from members of the genus Paracoccus on the basis of phenotypic and biochemical characteristics. It is evident from the genotypic, chemotaxonomic and phenotypic data that strain JLT1679T represents a novel species of the genus Paracoccus, for which the name Paracoccus oceanense sp. nov. is proposed. The type strain is JLT1679T (= JCM 17768T = CGMCC 1.10831T).  相似文献   

6.
A Gram-negative, non-motile, catalase- and oxidase- positive, strictly aerobic, and short rod-shaped bacterium that was designated strain KOPRI 25157T was isolated from coastal seawater sample in Antarctica. The temperature and pH ranges for growth on R2A agar were 10–20°C, and 5.0–10.0, respectively. Phylogenetic analyses of the 16S rRNA gene sequence of strain KOPRI 25157T showed it to belong to the family Oxalobacteraceae of the class Betaproteobacteria, and it formed a distinct clade from other recognized members of the family. DNA G + C content was 65.9 mol%. Major ubiquinone was Q-8. Predominant cellular fatty acids were C16:1 ω7c/15 iso 2OH (56.4%) and C16:1 (30.5%). Major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and unknown lipid. On the basis of these data, it is proposed that strain KOPRI 25157T is the representative of a novel genus, for which the name Actimicrobium gen. nov. is proposed in the family Oxalobacteraceae. The type strain for Actimicrobium antarcticum sp. nov. is KOPRI 25157T (=JCM 16673T=KCTC 23040T).  相似文献   

7.
Kretzschmaria varians, a species apparently related to K. micropus, is described as new. It is distinguished primarily by having asci with 2 to 8 ascospores with inconstant germination slit length and remains of synnemata on stromata and surrounding substrate. Xylaria coremiifera, described here as new, bears small fragile coremia on pulvinate stromata and the surrounding substrate. Asci often have fewer than 8 ascospores, most frequently 4. Xylaria umbonata, described here as new, produces perithecia around a central umbo that appears to be the remains of a synnema. Ascospores have long spiralling germination slits.  相似文献   

8.
A Gram staining negative, rod-shaped, aerobic bacterial strain J5-3T with a single polar flagellum was isolated from coking wastewater collected from Shaoguan, Guangdong, China. It was motile and capable of optimal growth at pH 6–8, 30 °C, and 0–2 % (w/v) NaCl. Its predominant fatty acids were 11-methyl C18:1 ω7c (29.2 %), C16:0 (20.6 %), C19:0 cyclo ω8c (18.2 %), C18:0 (11.0 %), and C18:1 ω7c/C18:1 ω6c (10.9 %) when grown on trypticase soy agar. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids (GL1, GL2), and two unknown phospholipid (PL1, PL2). The predominant ubiquinone was Q-10, and the genome DNA G+C content was 61.7 mol %. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain J5-3T belonged to the family Hyphomicrobiaceae in Alphaproteobacteria. It shared the 16S rRNA gene sequence similarities of 93.8–96.1 % with the genus Devosia, 94.5–94.8 % with the genus Pelagibacterium, and <92.0 % with all the other type strains in family Hyphomicrobiaceae. It can be distinguished from the closest phylogenetic neighbors based on several phenotypic and genotypic features, including α-galactosidase activity, tetracycline susceptibility, major fatty acid composition, polar lipid profile, DNA gyrase B subunit (gyrB) gene sequence, and random-amplified polymorphic DNA profile. Therefore, we consider strain J5-3T to represent a novel species of a novel genus within the family Hyphomicrobiaceae, for which the name Paradevosia shaoguanensis gen. nov., sp. nov. is proposed. The type strain of Paradevosia shaoguanensis is J5-3T (=CGMCC 1.12430T =LMG 27409T).  相似文献   

9.
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04′N 126°57′E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25–30 °C, pH 6.5–7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA–DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).  相似文献   

10.
Liu K  Zong R  Li Q  Fu Y  Xu Y  Wang Y  Jiao N 《Current microbiology》2012,64(4):385-391
The alphaproteobacterial strain JLT2003T was isolated from surface seawater off the coast of Guishan island, Taiwan. The strain was Gram negative, ovoid or coccoid, non-motile and formed pink colonies on marine agar 2216 (MA; DIFCO) medium. The dominant fatty acids were C18:1ω7c, cyclo C19:0ω8c, and C16:0. The polar lipid profile consisted of diphosphatidylglycerol and phosphatidylglycerol. The major respiratory ubiquinone was Q-10. The DNA G+C content was 62.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was most closely related to Pontibaca methylaminivorans GRP21T with 94.8% similarity. The isolate was distinguishable from members of the family Rhodobacteraceae based on phenotypic and biochemical characteristics. On the basis of the taxonomic data presented, strain JLT2003T is considered to represent a novel species of a new genus, for which the name Oceaniovalibus guishaninsula gen. nov., sp. nov. is proposed. The type strain of Oceaniovalibus guishaninsula is JLT2003T (=JCM 17765T = CGMCC 1.10827T).  相似文献   

11.
A Gram-stain negative, ovoid or short rod-shaped, aerobic and non-motile bacterial strain, designated J82T, was isolated from a seawater sample collected from the coast of Yellow Sea in Qingdao, China. The strain grew at salinities of 1.0–6.0% (w/v) NaCl (optimum, 2.5%). Growth occurred at pH 6.0-8.0 (optimum, pH 7.0) and 10–42 °C (optimum, 28–30 °C). The genomic DNA G + C content was determined to be 57.5 mol%. Q-10 was detected as the respiratory quinone. The major fatty acid (>10%) was Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain J82T forms a distinct evolutionary lineage within the family Rhodobacteraceae. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, the strain merits recognition as representative of a novel genus and species within the family Rhodobacteraceae for which the name Rubricella aquisinus gen. nov., sp. nov. is proposed. The type strain of Rubricella aquisinus is J82T (= DSM 103377T = CCTCC AB 2016170T).  相似文献   

12.
Two novel ascomycetous yeast species, Saturnispora serradocipensis and Saturnispora gosingensis, were isolated from leaf detritus in a tropical stream of Southeastern Brazil and a mushroom collected in Taiwan, respectively. Analysis of the D1/D2 domains of the large-subunit of the rRNA gene of these strains showed that these species are related to Saturnispora hagleri, their closest relative. Saturnispora serradocipensis and S. gosingensis differed from S. hagleri, respectively, by seven nucleotide substitutions and two indels and three nucleotide substitutions and three indels in D1/D2 rRNA sequences. The two new species differ from each another by four nucleotide substitutions and one indel in D1/D2 rRNA sequences. However, the ITS sequences of S. serradocipensis, S. gosingensis and S. hagleri were quite divergent, showing that they are genetically separate species. The type strain of S. serradocipensis is UFMG-DC-198T (=CBS 11756T = NRRL Y-48717T), and of S. gosingensis GA4M05T is (CBS 11755T = NRRL Y-48718T).  相似文献   

13.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

14.
A Gram stain-negative, yellowish green-pigmented, facultatively anaerobic, motile, curved rod-shaped bacterium designated as strain JJ016T was isolated from an artificial lake in South Korea, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ016T indicated that the isolate belonged to the family Rhodocyclaceae and exhibited 95.0% identity to Uliginosibacterium gangwonense 5YN10-9T. The major cellular fatty acids of the novel strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0, C14:0, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of strain JJ016T was 61.9 mol%. The major respiratory quinone and major polar lipid of strain JJ016T were ubiquinone-8 and phosphatidylethanolamine, respectively. Based on the morphological and physiological properties and the biochemical evidence presented, we concluded that strain JJ016T represents a novel species of a new genus in the family Rhodocyclaceae, for which the name Viridibacterium curvum gen. nov., sp. nov. is proposed. The type strain is JJ016T (=KACC 16899T =JCM 18715T).  相似文献   

15.
A single strain, designated BF49T, was isolated from a biofilm of a tufa deposit from the Westerhöfer rivulet, Lower Saxony, Germany. The G+C content of the genomic DNA of strain BF49T was 69 mol% and the predominant ubiquinone was Q-8. Major fatty acids were C16:1ω7c/15 iso 2OH and C16:0. Comparative 16S rRNA gene sequence analysis indicated that the isolate was placed within the genus Methylibium, class Betaproteobacteria, distantly related to the type strain Methylibium petroleiphilum LMG 22953T (97.4% similarity), Methylibium fulvum Gsoil 322T (96%), and Methylibium aquaticum IMCC1728T (95.7%). On the basis of phylogenetic and phenotypic distinctness we propose a novel species, Methylibium subsaxonicum sp. nov., with strain BF49T (DSM 19570T, CIP 109700T) as the type strain.  相似文献   

16.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

17.
A Gram-staining-negative, non-motile, curved rod-shaped, aerobic bacterium, designated S1-2-4T, was isolated from soil in Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-4T was a member of the family Cytophagaceae and most closely related to ‘Spirosoma radiotolerans’ DG5A (97.2%), Spirosoma fluviale MSd3T (96.4%), and Spirosoma linguale DSM 74T (96.3%). The genomic DNA G + C content of strain S1-2-4T was 49.7 mol%. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), C16:1ω5c, and C16:0, and the major polar lipid was phosphatidylethanolamine. MK-7 was the predominant respiratory quinone. Phenotypic and chemotaxonomic data supported the affiliation of strain S1-2-4T with the genus Spirosoma. DNA-DNA hybridization between strain S1-2-4T and ‘Spirosoma radiotolerans’ showed relatively low DNA-DNA relatedness (31%). Strain S1-2-4T could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, strain S1-2-4T represents a novel member of the genus Spirosoma, for which the name Spirosoma lituiforme sp. nov. is proposed. The type strain is S1-2-4T (= KCTC 52724T = JCM 32128T).  相似文献   

18.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-8T, was isolated from soil on Jeju Island, Republic of Korea. The isolate was able to grow between 10 and 30°C, pH 6.5–8.5, and in presence of 0–1% (w/v) NaCl. The results of comparative 16S rRNA gene sequence analysis indicated that strain 15J9-8T represented a member of the family Cytophagaceae, phylum Bacteroidetes, and was most closely related to Spirosoma aerophilum 5516J-17T (96.1% similarity), Spirosoma pulveris JSH5-14T (95.6%), and Spirosoma linguale DSM 74T (95.2%). The G + C content of the genomic DNA of the isolate was 47.0 mol%. Strain 15J9-8T contained summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, and iso-C15:0 as the major fatty acids, phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, and menaquinone MK-7 as the predominant respiratory quinone. On the basis of its phenotypic and genotypic properties, and phylogenetic distinctiveness, strain 15J9-8T should be classified as a representative of a novel species of the genus Spirosoma, for which the name Spirosoma migulaei sp. nov. is proposed. The type strain is 15J9-8T (=KCTC 52028T =JCM 31996T).  相似文献   

19.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

20.
A Gram-negative, motile, aerobic and rod-shaped bacterial strain designated 119BY6-57T was isolated from spongin. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 119BY6-57T grew well at 25–30°C on marine agar. On the basis of 16S rRNA gene sequence similarity, strain 119BY6-57T belongs to the family Xanthomonadaceae and is related to Lysobacter aestuarii S2-CT (99.8% sequence similarity), L. maris KMU-14T (97.5%), and L. daejeonensis GH1-9T (97.3%). Lower sequence similarities (97.0%) were found with all of the other recognized members of the genus Lysobacter. The G + C content of the genomic DNA was 69.9 mol%. The major respiratory quinone was Q-8 and the major fatty acids were C16:0 iso, C15:0 iso, summed feature 9 (comprising C17:1 iso ω9c and/or C16:0 10-methyl), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), and C11:0 iso 3-OH. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified phospholipids, and an unidentified polar lipid. DNADNA relatedness values between strain 119BY6-57T and its closest phylogenetically neighbors were below 48.0 ± 2.1%. Based on genotypic and phenotypic characteristics, it is concluded that strain 119BY6-57T is a new member within the genus Lysobacter, for which the name Lysobacter spongiae sp. nov. is proposed. The type strain is 119BY6-57T (= KACC 19276T = LMG 30077T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号