首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Probing the proteasome pathway   总被引:2,自引:0,他引:2  
  相似文献   

3.
The PathoLogic component of the Pathway Tools software performs prediction of metabolic pathways in sequenced and annotated genomes. This article provides a detailed presentation of the PathoLogic algorithm. The algorithm consists of two phases. The reactome inference phase infers the reactions catalyzed by the organism from the set of enzymes present in the annotated genome. The pathway inference phase infers the metabolic pathways present in the organism from the reactions catalyzed by the organism. Both phases draw on the MetaCyc database of metabolic reactions and pathways. MetaCyc contains two data fields to support pathway inference: the expected taxonomic range of each pathway, and a list of key reactions for pathways. These fields have significantly increased the predictive accuracy of PathoLogic.  相似文献   

4.
Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.  相似文献   

5.
Signaling on the endocytic pathway   总被引:9,自引:2,他引:7  
Endocytosis regulates many cellular signaling processes by controlling the number of functional receptors available at the cell surface. Conversely, some signaling processes regulate the endocytic pathway. Furthermore, various cellular signaling events appear to occur on endosome membranes. The endocytic pathway, by providing a set of dynamic and biochemically specialized endomembrane structures that physically communicate with the plasma membrane, is increasingly viewed as a highly flexible scaffold for mediating precise spatiotemporal control and transport of diverse biological signals. General principles of endosome-based signaling are beginning to emerge but, in many cases, the physiological significance of signaling on the endocytic pathway remains poorly understood.  相似文献   

6.
7.
Ubiquitylation participates in a repertoire of reversible post-translational modifications that modulate the function, localization and half-life of proteins by regulating their association with various ubiquitin-binding proteins. In response to pathogen infection, bacterial effectors impact ubiquitin and ubiquitin-like modifications of key proteins in immune and anti-apoptotic signaling cascades. Certain bacteria corrupt the ubiquitylation machinery in order to regulate their virulence factors spatially and temporally or to trigger internalization of bacteria into host cells. Several new examples of how bacterial factors target ubiquitin and ubiquitin-like regulation emphasize the importance of modulating ubiquitin signaling to establish either long-lasting or devastating relationships of bacteria with their hosts.  相似文献   

8.
Phosphorylation of the phosphatidylinositol headgroup generates seven varieties of phosphoinositide of which PtdIns(4,5)P2, PtdIns3P and PtdIns (3,5)P2 have established roles on the endocytic pathway. In this review, we discuss the enzymes responsible for generation and turnover of these lipids, which are keys to determining compartmental identity and the flux of material through the endocytic system. The enzymatic generation of lipids serves as an amplification mechanism through which a wide variety of effector molecules can be recruited.  相似文献   

9.
Filling out the Hippo pathway   总被引:4,自引:0,他引:4  
How cell numbers are controlled during organ development is a problem that is still in need of answers. Recent studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelial cells. Much like cancer cells, cells that contain mutations for components of the Hippo pathway proliferate inappropriately and have a competitive edge in genetically mosaic tissues. Although poorly characterized in mammals, several components of the Hippo pathway seem to be tumour suppressors in humans.  相似文献   

10.
Localization of the homocitrate pathway   总被引:4,自引:0,他引:4  
  相似文献   

11.
12.
Signaling the pathway to regeneration   总被引:16,自引:0,他引:16  
Snider WD  Zhou FQ  Zhong J  Markus A 《Neuron》2002,35(1):13-16
Robust axon regeneration occurs after peripheral nerve injury through coordinated activation of a genetic program and local intracellular signaling cascades. Although regeneration-associated genes are being identified with increasing frequency, most aspects of regeneration-associated intracellular signaling remain poorly understood. Two independent studies now report that upregulation of cAMP is a component of the PNS regeneration program that can be exploited to enhance axon regeneration through the normally inhibitory CNS environment.  相似文献   

13.
14.
15.
16.
Lawrence CW 《DNA Repair》2007,6(5):676-686
Errol Friedberg suggested that I write a biographical account of the work carried out in my lab for the Historical Reflections section of the DNA Repair. Although I started out studying meiotic recombination, I have spent much of the last four and a half decades focused on trying to understand the mechanism underlying induced mutagenesis, which led me into what was eventually called DNA damage tolerance, the process that facilitates the resumption of replication when replicases are stalled at sites of DNA template damage. The following account highlights some of our work that contributed to an understanding of the mechanisms underlying these activities, carried out by the RAD6 pathway, my main preoccupation over this period.  相似文献   

17.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   

18.
Metalloenzymes of the denitrification pathway   总被引:2,自引:0,他引:2  
  相似文献   

19.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

20.
Leliveld SR  Stitz L  Korth C 《Biochemistry》2008,47(23):6267-6278
A misfolded conformation of the prion protein (PrP), PrP (Sc), is the essential component of prions, the infectious agents that cause transmissible neurodegenerative diseases. Insertional mutations that lead to an increase in the number of octarepeats (ORs) in PrP are linked to familial human prion disease. In this study, we investigated how expansion of the OR domain causes PrP to favor a prion-like conformation. Therefore, we compared the conformational and aggregation modulating properties of wild-type versus expanded OR domains, either as a fusion construct with the protein G B1 domain (GB1-OR) or as an integral part of full-length mouse PrP (MoPrP). Using circular dichroism spectroscopy, we first demonstrated that ORs are not unfolded but exist as an ensemble of three distinct conformers: polyproline helix-like, beta-turn, and "Trp-related". Domain expansion had little effect on the conformation of GB1-OR fusion proteins. When part of MoPrP however, OR domain expansion changed PrP's folding landscape, not by hampering the production of native alpha-helical monomers but by greatly reducing the propensity to form amyloid and by altering the assembly of misfolded, beta-rich aggregates. These features may relate to subtle pH-dependent conformational differences between wild-type and mutant monomers. In conclusion, we propose that PrP insertional mutations are pathogenic because they enhance specific misfolding pathways of PrP rather than by undermining native folding. This idea was supported by a trial bioassay in transgenic mice overexpressing wild-type MoPrP, where intracerebral injection of recombinant MoPrP with an expanded OR domain but not wild-type MoPrP caused prion disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号