首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of membrane-embedded domains of lipophilin from human myelin   总被引:1,自引:0,他引:1  
The organization of lipophilin in the intact human myelin membrane has been studied by labeling with the carbene photogenerated from 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). This hydrophobic probe labels mostly lipophilin (the main intrinsic protein of myelin) and the lipids within the bilayer. The domains of lipophilin which are embedded within the membrane have been identified by proteolytic fragmentation of the [125I]TID-labeled myelin, extraction with organic solvents, and separation by chromatography. Four labeled peptides were purified in this way. Polyacrylamide gel electrophoresis, amino acid compositions, automated sequencing, and carboxy-terminal analyses identified a 15K molecular weight peptide, T1 (residues 1-143), as representing the amino-terminal fragment, a 10K peptide, T2 (residues 1-97), representing a smaller amino-terminal fragment, a 5K peptide, T4 (residues 53-97), which represented the COOH-terminal half of peptide T2, and a 7K peptide, T3 (residues 205-268), which represented a sequence near the COOH terminus of lipophilin. The specific radioactivities of the peptides were determined; peptides T1 and T2 had similar specific activities, which were twice the specific activities of peptides T3 and T4. The data provide direct chemical evidence that human lipophilin has membrane-embedded domains between residues 1-97, 53-97, and 205-268, in agreement with some of the predictions of other investigators based on the sequence of bovine myelin lipophilin (proteolipid apoprotein) and a hydrophobicity diagram.  相似文献   

2.
The localization of proteins in myelin was studied by the use of a non-penetrating reagent. Tritiated 4,4'-diisothiocyano-2,2'-ditritiostilbene disulfonic acid was used to label the isolated myelin membrane. The membrane was labelled, the basic protein and the hydrophobic protein, lipophilin, were isolated. After 10 min of exposure to the reagent, the specific activity of lipophilin was found to be 10 times greater than that of the basic protein. Water shock did not alter the specific activities. However, sonication increased the specific activity of lipophilin but not that of basic protein. When the isolated proteins were labelled with 3H-labelled 4,4'-diisothiocyano-2,2'-ditritiostilbene disulfonic acid, the specific activity of the basic protein was 10 times that of lipophilin. We concluded that the low specific activity of basic protein isolated from the labelled membrane was due to the inaccessible position of this protein in the membrane bilayer.  相似文献   

3.
Circular dichroism spectra of lipophilin (a hydrophobic protein purified from human central nervous system myelin) were analyzed by the method of Chen et al. (1974) to obtain information on its secondary structure in aqueous and lipid environments. When introduced into phosphatidylcholine vesicles by dialysis from 2-chloroethanol, the protein possessed about 75% alpha helix. A new water-soluble form of lipophilin also containing over 70% alpha helix was obtained by a similar dialysis in the absence of lipid. This product had a higher helical content than two other water-soluble preparations derived by dialysis from phenol-acetic acid-urea. Interaction of all three aqueous forms of the protein with lysolecithin micelles resulted in increases in total helical content or in the average length of helical segments. The amount of beta sheet was at a minimum for lipophilin incorporated into vesicles, where the presence of lipid also provided some protection against thermal denaturation.  相似文献   

4.
The localization of proteins in myelin was studied by the use of a non-penetrating penetrating reagent. Tritiated 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid was used to label the isolated myelin membrane. The membrane was labelled, the basic protein and the hydrophobic protein, lipophilin, were isolated. After 10 min of exposure to the reagent, the specific activity of lipophilin was found to be 10 times greater than that of the basic protein. Water shock did not alter the specific activities. However, sonication increased the specific activity of lipophilin but not that of basic protein. When the isolated proteins were labelled with 3H-labelled, 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid, the specific activity of the basic protein was 10 times that of lipophilin. We concluded that the low specific activity of basic protein isolated from the labelled membrane was due to the inaccessible position of this protein in the membrane bilayer.  相似文献   

5.
Differences have been observed between myelin vesicles prepared from normal human central nervous system and from white matter of patients who died with multiple sclerosis (MS). The mean cross-sectional area of the vesicles was 5.69 +/- 0.17 micron 2 from normal myelin and 3.71 +/- 0.28 micron 2 for diseased myelin. Vesicle size was reduced to 4.08 +/- 0.21 micron 2 when normal myelin vesicles were prepared in the presence of 0.1 mM EDTA. The presence of Ca2+ during the preparation of the vesicles had no effect on the mean cross-sectional area. In the case of MS myelin vesicles, 0.1 mM EDTA had no effect on vesicle size, whereas the presence of Ca2+ increased the vesicle size from 3.71 +/- 0.28 to 5.40 +/- 0.31 micron 2. Electrokinetic analysis revealed that the electrophoretic mobility of normal myelin vesicles was -5.169 +/- 0.193 X 10(-8) compared with -6.093 +/- 0.202 X 10(-8) m2 s-1 V-1 for the MS myelin vesicles. The presence of 0.1 mM EDTA increased the electrophoretic mobility of the normal vesicles to -6.483 +/- 0.151 X 10(-8) m2 s-1 V-1 but did not significantly affect that of the MS vesicles. Addition of 0.1 mM Ca2+ decreased the electrophoretic mobility of both normal and MS vesicles to similar mobilities. From these data, the surface charge densities were calculated for both normal and MS myelin vesicles and found to be -2.93 and -5.39 mV m-1, respectively. The phase transition temperature determined by wide-angle x-ray diffraction studies was 63 degrees C for normal myelin vesicles and 43 degrees C for MS myelin vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Purified lipophilin, a hydrophobic lipoprotein of myelin, induces a cell-mediated demyelinating disease of the central nervous system similar to experimental allergic encephalomyelitis (EAE) induced by the myelin basic protein (MBP). Guinea pigs challenged with lipophilin (emulsified with CFA) developed clinical and histological signs of disease indistinguishable from those developed by animals similarly challenged with MBP. Both lipophilin and MBP induced and elicited delayed-type hypersensitivity in animals challenged with respective antigens. Tryptophan, an essential component of the MBP-determinant for disease in guinea pigs, is required for the encephalitogenicity of lipophilin.  相似文献   

7.
Human myelin basic protein was fractionated into its various charge isomers by CM52 cation exchange chromatography. Approximately 25-30% of the total charge applied to the column appeared in the void volume. This material termed "C-8," was further purified by reversed phase high performance liquid chromatography. Amino acid analyses of C-8 revealed low Arg (7 residue % in C-8 compared to 11-12 residue % in C-1) and increased Glx residues. The low Arg was accounted for by a corresponding amount of citrulline. Sequence analysis after chemical fragmentation (cyanogen bromide and BNPS-skatole) and enzymatic (cathepsin D and carboxypeptidase S-1) digestion localized the citrulline at residues 25, 31, 122, 130, 159, and 170 of the amino acid sequence. The effect of this loss of positive charge on the ability of the protein to aggregate lipid vesicles was demonstrated with vesicles composed of phosphatidylcholine (92.2 mol %) and phosphatidylserine (7.8 mol %). C-1 was the most effective charge isomer, and C-8 was the least effective. The ability of these charge isomers to aggregate vesicles correlated with the net positive charge on each. Vesicles composed of phosphatidylcholine alone were not aggregated by lipophilin or any of the charge isomers. However, when lipophilin was incorporated into phosphatidylcholine vesicles (50% w/w), small, optically clear suspensions of vesicles were formed. None of C-1, C-2, or C-3 aggregated these vesicles, but C-8 produced rapid vesicle aggregation. Since the substitution of citrulline for Arg would generate several relatively long apolar sequences, these would enhance the ability of C-8 to interact with the hydrophobic lipophilin molecule, promoting vesicle aggregation by hydrophobic interactions. The mechanism by which citrulline is generated in myelin is not known, although enzymatic conversion has been described in other systems. Studies are underway to elucidate the mechanism by which this post-translational modification is generated.  相似文献   

8.
cDNA clones of rat brain proteolipid protein (PLP), also named lipophilin, the major integral myelin membrane protein, and of myelin basic protein (MBP), the major extrinsic myelin protein, have been isolated from a rat brain cDNA library cloned into the PstI site of pBR322. Poly(A)+ RNA from actively myelinating 18-day-old rats has been reversely transcribed. Oligonucleotides synthesized according to the established amino-acid sequence of lipophilin and the nucleotide sequence of the small myelin basic protein of the N-terminal, the central and C-terminal region of their sequences were used as hybridization probes for screening. The largest insert in one of several lipophilin clones was 2,585 base pairs (bp) in length (pLp 1). It contained 521 bp of the C-terminal coding sequence and the complete 2,064 bp long non-coding 3' sequence. The myelin basic protein cDNA insert of clones pMBP5 and pMBP6 is 2,530 bp long and that of clones pMBP2 and pMBP3 640 bp. These clones were also characterized. pMBP2 was sequenced and used together with the lipophilin cDNA clones as hybridization probes to estimate the lipophilin and myelin basic protein mRNA levels of rat brain during the myelination period. The expression of the lipophilin and myelin basic protein genes during development of the myelin sheath appears to be strictly coordinated.  相似文献   

9.
The water-soluble form of apoproteolipid (APL) from bovine brain myelin was found to bind with phosphatidylcholine (PC)/phosphatidylethanolamine (PE) (6:4) vesicles below pH 5. The protein bound to vesicles was photoactively labeled with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I)TID) and was digested with trypsin. A [125I]TID-labeled fragment with an apparent molecular weight of approximately 2,500 was extracted. An APL fragment with an identical Mr value was also obtained from the tryptic digest of APL/vesicle complex without prior labeling with [125I]TID. Determination of amino acid composition and the identification of the N-terminal amino acid residue of this unlabeled fragment showed that this protected segment covers the amino acid residues from Met-205 to Lys-228. In another experiment, the [125I]TID-labeled APL obtained from the above experiment without the proteolysis step was extracted and reconstituted into PC vesicles. Subsequent tryptic digestion of the exposed segment and comparison of the elution profile of the extracted polypeptides on a Sephadex LH-60 column with the published profile of these polypeptides indicated that the membrane-inserted segment of the water-soluble form of APL when bound to vesicles is the C-terminal region of this apoprotein within the amino acid residues between Met-205 and Lys-268.  相似文献   

10.
Guinea pig brain cortex synaptosomes and neurosecretory PC12 cells were loaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) and then exposed to leptinotoxin-h (LPTx) (purified and partially purified preparations, obtained from the hemolymph of Leptinotarsa haldemani). In a Ca2+-containing Ringer medium the toxin induced prompt and massive release of the neurotransmitter. Half-maximal effects were obtained at concentrations estimated of approximately 3 X 10(-11) M for synaptosomes, and 1.5 X 10(-10) M for PC12 cells. Release responses in the two experimental systems investigated were dependent to different extents on the Ca2+ concentration in the medium. In synaptosomes clear, although slow, release of [3H]DA was elicited by the toxin even in Ca2+-free, EGTA-containing medium, provided that high (in the 10(-10) M range) concentrations were used; near-maximal responses were observed at 10(-5)M Ca2+. In contrast, the toxin-induced release from PC12 cells was appreciable only at 3 X 10(-5) M Ca2+, and was maximal at 2 X 10(-4) M and above. In both synaptosomes and PC12 cells Sr2+ and Ba2+ could substitute for Ca2+; Co2+ was inhibitory, whereas Mn2+ failed to modify the release induced by the toxin in Ca2+-containing medium. Organic blockers of the voltage-dependent Ca2+ channel (verapamil and nitrendipine) and calmodulin blocking drugs (trifluoperazine and calmidazolium) failed to inhibit the toxin-induced release of [3H]DA. LPTx induced profound morphological effects. Synaptosomes treated in the Ca2+-containing medium exhibited fusion of synaptic vesicles, formation of numerous infoldings and large cisternae, and alterations of mitochondria. In the Ca2+-free medium the effects were similar, except that their appearance was delayed, and mitochondria were well preserved. Swelling was observed in PC12 cells, accompanied by enlargement of the Golgi area, accumulation of multivesicular bodies, mitochondrial alterations, and decreased number of secretion granules (Ca2+-containing medium). Morphometric analyses revealed a good correlation between the decrease of both synaptic vesicles (synaptosomes) and neurosecretory granules (PC12 cells), and the release of [3H]DA measured biochemically. This is a good indication that the release effect of the toxin is due to stimulation of exocytosis. Taken as a whole, these results confirm the similarity of the effects of LPTx with alpha-latrotoxin of the black widow spider venom, mentioned in the companion article. However, differences in effect and target specificity suggest that the two toxins are specific to separate binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Lipophilin, a hydrophobic protein purified from the proteolipid of normal human brain myelin, was recombined with phosphatidylcholine by solubilization of the lipid and protein in 2-chloro-ethanol followed by dialysis against buffer. This method resulted in homogeneous incorporation of the protein into lipid vesicles as judged by sedimentation on a sucrose gradient and freeze fracture electron microscopy. The lipid-protein vesicles were single layered, 1000–2000 Å in diameter and the freeze fracture faces contained intramembrane particles. The effect of lipophilin on the organization of the lipid was studied by use of spin label probes. Two distinct components were present in the spectrum of fatty acid spin labels in the lipid-protein vesicles. One was immobilized presumably due to the presence of boundary lipid around the protein and the second component was indicative of aniostropic motion similar to the spectrum in phosphatidylcholine vesicles and probably due to a lamellar phase but with a slightly greater order parameter. Lipophilin was found to increase the order parameter linearly with increasing concentration of protein incorporated into the vesicles. However, the phase transition temperature as measured from the 2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPO) solubility parameter was unchanged.  相似文献   

12.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

13.
Lipophilin, a hydrophobic myelin protein, was incorporated into phosphatidylcholine vesicles by dialysis from 2-chloroethanol which has been shown to produce single-layered lipid-protein vesicles. These vesicles were labeled with a nonpenetrating surface-labeling reagent, 4,4-diisothiocyano-2,2-ditritiostilbene disulfonic acid, ([3H]DIDS), in order to determine if the protein completely spans the bilayer. After labeling the vesicles, lipophilin was isolated. At least 88% of the protein was labeled with [3H]DIDS. Dextran (mol wt 250,000–275,000) was converted to the dialdehyde form and reacted with lipophilin-PC vesicles. In this case greater than 90% of the protein was complexed to the dextran. The high degree of labeling obtained with both compounds was consistent with a model in which lipophilin was considered to span the bilayer completely.  相似文献   

14.
The fluorescence characteristics of lipophilin, a proteolipid apoprotein from human myelin, were determined in aqueous and lipid environments. In all cases the tryptophan residues were located in buried hydrophobic sites of uniform, but limited, accessibility to the permeant quenching agent acrylamide; only in the helicogenic solvent 2-chloroethanol were the protein fluorophores exposed to the medium. Quantum yields were dependent on the state of aggregation of the protein in aqueous solution and increased considerably on treatment with lysolecithin micelles, or when the protein was combined with phosphatidylcholine by codialysis from 2-chloroethanol into water. Fluorescence titrations indicated that lipophilin bound to lysolecithin with an association constant greater than 10(6) L/mol. Radiationless singlet excitation energy transfer from tyrosine to tryptophan residues was found to decrease markedly when the protein was combined with lipids. When the protein was introduced into dimyristoylphosphatidylcholine vesicles, the tryptophan fluorescence did not detect any solid-liquid phase change. These results were consistent with strong hydrophobic interactions between lipophilin and phospholipids, which lead to conformational adjustments in the protein, and to establishment of an immobilized layer of boundary lipid in bilayer systems.  相似文献   

15.
A J Schroit  J Madsen  A E Ruoho 《Biochemistry》1987,26(7):1812-1819
An isotopically labeled cross-linking reagent, succinimido 3-(3-[125I]iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures [Schroit, A. J., & Madsen, J. (1983) Biochemistry 22, 3617-3623]. 125I- and N3-labeled phosphatidylserine (125I-N3-PS) was produced from the phosphatidylcholine (PC) analogue by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with 125I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the 125I-N3-phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the 125I-N3-PC incorporated into the cells could be removed by washing with serum, whereas the 125I-N3-PS could not. After photolabeling of intact RBC, approximately 50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl3/MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 125I-N3-PS preferentially labeled a Mr 30,000 peptide which contained approximately 30% of the protein-bound label.  相似文献   

16.
本文研究了EGF、PTH和RA对UMR106细胞EGF受体的调节作用。结果显示PTH能上调EGF的受体,UMR106细胞经bPTH(1-34)处理3天,EGF受体的相对结合率与对照比较提高了40.3%,每个细胞的EGF受体数目从7.22×10~3增加到1.44×10~4,Kd从2.02×10~(-11)增加到3.68×10~(-11)mol/L。而RA则能下调EGF受体,以RA处理3天,EGF受体数目从7.22×10~3下降到4.28×10~3,Kd则从2.02×10~(-11)增加到4.17×10~(-11)mol/L。提示PTH和RA可能通过调变其EGF受体而分别起到正性和负性生长调节作用。  相似文献   

17.
The specific binding of 125I-human choriogonadotropin (hCG) to plasma membranes, nuclear membranes, lysosomes, rough endoplasmic reticulum, heavy golgi, and medium and light golgi of bovine corpora lutea was dependent on the amount of protein, 125I-hCG concentration and incubation time. The bound hormone in all the organelles was able to rebind to fresh corresponding organelles. Scatchard analysis revealed a homogenous population of gonadotropin binding sites in plasma membrane, rough endoplasmic reticulum, heavy golgi, and medium and light golgi, whose binding affinities (Kd = 8.6-11.0 X 10(-11) M) were similar but whose number of available gonadotropin binding sites varied. Scatchard analyses of nuclear membranes and lysosome binding, on the other hand, were heterogenous (Nuclear membranes, 11 and 23 X 10(-11) M lysosomes, 3.4 and 130 X 10(-11) M). The rate constants for association (5.9 to 12.1 X 10(6) M-1 S-1) and dissociation (7.4 to 9.0 X 10(-4) S-1) were similar among different subcellular organelles except for nuclear membranes and lysosomes, where rate constants for association were significantly lower. The ligand binding specificity, lower effectiveness of human luteinizing hormone as compared to hCG in competition, the optimal pH, the lack of ionic requirements for binding, and the molecular size of 125I-hCG-gonadotropin binding site complexes solubilized from various intracellular organelles were similar to those observed for plasma membranes. Numerous differences were also observed between intracellular organelles and plasma membranes as well as among intracellular organelles themselves with respect to binding losses due to exposure to low and high pH values, di- and monovalent cations, increasing preincubation temperatures, and a variety of enzymes and protein reagents. The possible reasons for these similarities as well as differences observed are discussed. The differences are viewed as an additional indication that contamination cannot solely explain the presence of gonadotropin binding sites in various intracellular organelles.  相似文献   

18.
Type beta transforming growth factor (beta TGF) purified from human platelets to homogeneity as judged by NH2-terminal amino acid sequence analysis has been labeled with 125I to characterize its interaction with cellular receptors. Binding of 125I-beta TGF to target cells is temperature- and time-dependent, specific, saturable, and reversible. About 1.6-1.9 X 10(4) binding sites/cell with high affinity for beta TGF (Kd = 5.6-7.8 X 10(-11) M and 9.1-14 X 10(-11) M, respectively) are found in NRK-49F and BALB/c 3T3 cells. beta TGF receptors do not appear to undergo acute down-regulation by the ligand. Specific binding of 125I-beta TGF has been observed in several human, rat, and mouse fibroblast lines and in some, but not all, tumor-derived cell lines examined. 125I-beta TGF has been cross-linked to intact cells and isolated membrane preparations using disuccinimidyl suberate. Cells and isolated membranes from human, rat, and mouse origin affinity labeled with 125I-beta TGF exhibit a major labeled species of approximately 280 kilodaltons that has the properties of high affinity and specificity expected from a physiologically relevant beta TGF receptor. Minor labeled species of 70-90 kilodaltons are also labeled by 125I-beta TGF, but they correspond to molecular species with low apparent affinity (Kd approximately 10(-8) M) for 125I-beta TGF.  相似文献   

19.
In cultured normal human skin fibroblasts specific and saturable binding sites for triiodothyronine (T3) have been revealed. In fact radiolabelled T3 binds rapidly to intact cells with maximum uptake after 1 hour, while nuclear binding is delayed, the equilibrium being reached after 2 hours. In intact cells it is possible to identify a single binding site for 125I-T3, with a Ka = 1.8 X 10(10)M-1 and Ro = 1.25 X 10(-11)M, similarly in nuclei it was possible to identify a single binding site of Ka = 8.8 X 10(9)M-1 and Ro = 2.3 X 10(-11)M. Intact human fibroblasts take up thyroxine (T4) even more rapidly than T3, with maximum after 5 min, showing a lower affinity for T4 than for T3 and a negligible specific and saturable binding sites for T4, the presence of a cellular transport system for T4 may be hypothesized, considering that iodothyronine cellular binding is increased by preincubation with low doses of T4.  相似文献   

20.
The dependency of delta pH-relaxation kinetics across the membrane of sonicated small phospholipid vesicles on the concentration of internally entrapped buffer has been investigated by means of the pH-indicator dye pyranine. A very high contribution of lipid headgroups to the internal buffering power of the liposomes is observed, amounting to an equivalent phosphate buffer concentration of 110 mM. This localized two-dimensional proton/hydroxide ion reservoir must be considered in any determination of the H+/OH- permeability coefficient. Furthermore, it could have significance for energy-transduction across biological membranes. From the established linear relation between delta pH-relaxation rates and buffering power, net H+/OH- permeabilities of 3 X 10(-3) cm/s for soybean phospholipid (SBPL) and 1 X 10(-4) cm/s for diphytanoyl phosphatidylcholine (diphytanoyl PC) vesicles at pH 7.2 as well as buffering powers per lipid molecule of 6 X 10(-2) (pH-unit)-1 (SBPL) and 4 X 10(-2) (pH-unit)-1 (diphytanoyl PC) are calculated. In the case of diphytanoyl PC vesicles, delta pH-decay is accelerated by the presence of chloride ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号