首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Receptor agonists that initiate fluid secretion in salivary gland epithelial cells also increase protein phosphorylation. To assess contributions of tyrosine phosphorylation to secretion, changes in muscarinic receptor-initiated secretion (estimated from sodium pump-dependent increases in oxygen consumption) were measured in parotid acinar cells exposed to tyrosine kinase inhibitors. However, like the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, tyrphostins AG10 and AG18 increased the rate of oxygen consumption and reduced cellular ATP by approximately 90% in the absence of the muscarinic agonist carbachol, indicating that these tyrphostins uncouple mitochondria. Exposure of isolated mitochondria to five structurally related tyrphostins demonstrated that their relative potencies as uncouplers differed from their in vitro kinase-inhibitory potencies due to different molecular requirements for the two effects. AG10 and AG18 blocked parotid phosphorylation events only at concentrations that reduced ATP content. The tyrosine kinase inhibitor genistein reduced ATP content by 15-20% and weakly uncoupled isolated mitochondria, but its inhibition of carbachol-mediated protein kinase Cdelta tyrosine phosphorylation and ERK1/2 activation appeared attributable to blocking tyrosine kinases directly. Carbachol itself rapidly reduced ATP content by 15-20%. Carbachol, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (P2X(7) receptor agonist), AG10, AG18, and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone rapidly activated the fuel sensor AMP-activated protein kinase (AMPK); however, only AMPK activation by carbachol and BzATP was due to sodium pump stimulation. AG10 and AG18 also activated AMPK and/or uncoupled mitochondria in PC12, HeLa, and HEK293 cells. These studies demonstrate that some tyrosine kinase inhibitors produce cellular effects that are mechanistically different from their primary in vitro characterizations and, as do salivary secretory stimuli, promote rapid metabolic alterations that initiate secondary signaling events.  相似文献   

2.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

3.
Cholinergic-muscarinic receptor agonists are used to alleviate mouth dryness, although the cellular signals mediating the actions of these agents on salivary glands have not been identified. We examined the activation of ERK1/2 by two muscarinic agonists, pilocarpine and carbachol, in a human salivary cell line (HSY). Immunoblot analysis revealed that both agonists induced transient activation of ERK1/2. Whereas pilocarpine induced phosphorylation of the epidermal growth factor (EGF) receptor, carbachol did not. Moreover, ERK activation by pilocarpine, but not carbachol, was abolished by the EGF receptor inhibitor AG-1478. Downregulation of PKC by prolonged treatment of cells with the phorbol ester PMA diminished carbachol-induced ERK phosphorylation but had no effect on pilocarpine responsiveness. Depletion of intracellular Ca2+ ([Ca2+]i) by EGTA did not affect ERK activation by either agent. In contrast to carbachol, pilocarpine did not elicit [Ca2+]i mobilization in HSY cells. Treatment of cells with the muscarinic receptor subtype 3 (M3) antagonist N-(3-chloropropyl)-4-piperidnyl diphenylacetate decreased ERK responsiveness to both agents, whereas the subtype 1 (M1) antagonist pirenzepine reduced only the carbachol response. Stimulation of ERKs by pilocarpine was also decreased by M3, but not M1, receptor small interfering RNA. The Src inhibitor PP2 blocked pilocarpine-induced ERK activation and EGF receptor phosphorylation, without affecting ERK activation by carbachol. Our results demonstrate that the actions of pilocarpine and carbachol in salivary cells are mediated through two distinct signaling mechanisms—pilocarpine acting via M3 receptors and Src-dependent transactivation of EGF receptors, and carbachol via M1/M3 receptors and PKC—converging on the ERK pathway. muscarinic receptor; epidermal growth factor receptor; protein kinase C  相似文献   

4.
The Na+-K+-ATPase and the ERK1/2 pathway appear to be linked in some fashion in a variety of cells. The Na+-K+-ATPase inhibitor ouabain can promote ERK1/2 activation. This activation involves Src, intracellular Ca2+ concentration ([Ca2+]i) elevation, reactive oxygen species (ROS) generation, and EGF receptor (EGFR) transactivation. In contrast, ERK1/2 can mediate changes in Na+-K+-ATPase activity and/or expression. Thus signaling between ERK1/2 and Na+-K+-ATPase can occur from either direction. Whether such bidirectionality can occur within the same cell has not been reported. In the present study, we have demonstrated that while ouabain (1 mM) produces only a small (50%) increase in ERK1/2 phosphorylation in freshly isolated rat salivary (parotid acinar) epithelial cells, it potentiates the phosphorylation of ERK1/2 by submaximal concentrations of carbachol, a muscarinic receptor ligand that initiates fluid secretion. Although ERK1/2 is only modestly phosphorylated when cells are exposed to 1 mM ouabain or 10–6 M carbachol, the combination of these agents promotes ERK1/2 phosphorylation to near-maximal levels achieved by a log order carbachol concentration. These effects of ouabain are distinct from Na+-K+-ATPase inhibition by lowering extracellular K+, which promotes a rapid and large increase in ERK1/2 phosphorylation. ERK1/2 potentiation by ouabain (EC50 100 µM) involves PKC, Src, and alterations in [Ca2+]i but not ROS generation or EGFR transactivation. In addition, inhibition of ERK1/2 reduces Na+-K+-ATPase activity (measured as stimulation of QO2 by carbachol and the cationophore nystatin). These results suggest that ERK1/2 and Na+-K+-ATPase may signal to each other in each direction under defined conditions in a single cell type. protein kinase C; intracellular Ca2+ concentration; muscarinic receptor; 1-subunit; potassium removal  相似文献   

5.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

6.
Muscarinic M(3) receptors stimulate ERK1/2, the mitogen-activated protein kinase pathway. A mutant of the muscarinic M(3) receptor in which most of the third intracellular (i3) loop had been deleted (M(3)-short) completely lost the ability to stimulate the ERK1/2 phosphorylation in COS-7 cells. This loss was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. In co-transfected cells, M(3)-short greatly reduced the ability of M(3) to activate ERK1/2. In another set of experiments we tested the ability of a mutant M(3)/M(2)(16aa) receptor, in which the first 16 amino acids of the i3 loop of the M(3) receptor were replaced with the corresponding segment of the muscarinic M(2) receptor to stimulate ERK1/2 phosphorylation. This mutant is not coupled to Galpha(q), but it is weakly coupled to Galpha(i). Despite its coupling modification this receptor was able to stimulate ERK1/2 phosphorylation. Again, M(3)-short greatly reduced the ability of M(3)/M(2)(16aa) to activate ERK1/2 in co-transfected cells. Similar results were obtained in stable-transfected Chinese hamster ovary (CHO) cells lines. In CHO M(3) cells carbachol induced a biphasic increase of ERK1/2 phosphorylation; a first increase at doses as low as 0.1 microm and a second increase starting from 10 microm. In CHO M(3)-short and in double-transfected CHO M(3)/M(3)-short cells we observed only the lower doses increase of ERK1/2 phosphorylation; no further increase was observed up to 1 mm carbachol. This suggests that in double-transfected CHO cells M(3)-short prevents the effect of the higher doses of carbachol on the M(3) receptor. In a final experiment we tested the ability of co-transfected chimeric alpha(2)/M(3) and M(3)/alpha(2) receptors to activate the ERK1/2 pathway. When given alone, carbachol and, to a lesser extent, clonidine, stimulated the coupling of the co-transfected chimeric receptors to the phospholipase C second messenger pathway, but they were unable to stimulate ERK1/2 phosphorylation. On the contrary, a strong stimulation of ERK1/2 phosphorylation was observed when the two agonists were given together despite the fact that the overall increase in phosphatidylinositol hydrolysis was not dissimilar from that observed in cells treated with carbachol alone. Our data suggest that the activation of the ERK1/2 pathway requires the coincident activation of the two components of a receptor dimer.  相似文献   

7.
Protein kinase Cdelta (PKCdelta) is activated by stimuli that increase its tyrosine phosphorylation, including neurotransmitters that initiate fluid secretion in salivary gland (parotid) epithelial cells. Rottlerin, a compound reported to be a PKCdelta-selective inhibitor, rapidly increased the rate of oxygen consumption (QO2) of parotid acinar cells and PC12 cells. In parotid cells, this was distinct from the effects of the muscarinic receptor ligand carbachol, which promoted a sodium pump-dependent increase in respiration. Rottlerin increased the QO2 of isolated rat liver mitochondria to a level similar to that produced when oxidative phosphorylation was initiated by ADP or when mitochondria were uncoupled by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The effects of rottlerin on mitochondrial QO2 were neither mimicked nor blocked by the PKC inhibitor GF109203X. Rottlerin was not effective in blocking PKCdelta activity in vitro. Exposure of freshly isolated parotid acinar cells to rottlerin and FCCP reduced cellular ATP levels and reduced stimuli-dependent increases in tyrosine phosphorylation of PKCdelta. Neither rottlerin nor FCCP reduced stimuli-dependent PKCdelta tyrosine phosphorylation in RPG1 cells (a salivary ductal line) or PC12 cells, consistent with their dependence on glycolysis rather than oxidative phosphorylation for energy-dependent processes. These results demonstrate that rottlerin directly uncouples mitochondrial respiration from oxidative phosphorylation. Previous studies using rottlerin should be evaluated cautiously.  相似文献   

8.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

9.
10.
Muscarinic receptors subserve many functions in both peripheral and central nervous systems. Some of these processes depend on increases in protein synthesis, which may be achieved by activation of mammalian target of rapamycin (mTOR), a kinase that regulates protein translation capacity. Here, we examined the regulation of mTOR-dependent signaling pathways by muscarinic receptors in SK-N-SH human neuroblastoma cells, and in human embryonic kidney (HEK) cell lines transfected with individual muscarinic receptor subtypes. In SK-N-SH cells, the acetylcholine analog carbachol stimulated phosphorylation of the ribosomal S6 protein, a downstream target of mTOR. The sensitivity of the response to subtype-selective muscarinic receptor antagonists indicated that it was mediated by M3 receptors. Carbachol-evoked S6 phosphorylation was blocked by the mTOR inhibitor rapamycin, but was independent of phosphoinositide 3-kinase activation. The response was significantly reduced by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also inhibited carbachol-evoked S6 phosphorylation in HEK cells expressing M2 receptors, but was ineffective in M3 receptor-expressing HEK cells, although carbachol activated MAPK in both transfected lines. The p90 ribosomal S6 kinase has been implicated in mTOR regulation by phorbol esters, but was not activated by carbachol in any of the cell lines tested. The protein kinase C inhibitor bisindolylmaleimide I reduced carbachol-stimulated S6 phosphorylation in SK-N-SH cells, and in HEK cells expressing M3 receptors, but not in HEK cells expressing M2 receptors. The results demonstrate that multiple muscarinic receptor subtypes regulate mTOR, and that both MAPK-dependent and -independent mechanisms may mediate the response in a cell context-specific manner.  相似文献   

11.
Activation of muscarinic receptors in human neuroblastoma SH-SY5Y cells with carbachol stimulated a rapid and large increase in early growth response-1 (Egr-1, also called zif268 and NGF1-A) protein levels and DNA binding activity. Egr-1 DNA binding activity was stimulated within 15 min of treatment with carbachol and maintained a maximum 20-fold increase over basal between 1 and 2 h after treatment, and the EC50 was approximately 1 microM carbachol. Carbachol-stimulated Egr-1 DNA binding activity was dependent on protein kinase C, as it was potently inhibited by GF109203X (IC50 approximately 0.1 microM) and was reduced by 85 +/- 5% by down-regulation of protein kinase C. Inhibitors of increases in intracellular calcium levels reduced carbachol-induced Egr-1 DNA binding activity by 25-35%. Carbachol-stimulated activation of Egr-1 was reduced 35% by genistein, a tyrosine kinase inhibitor, and 60% by PD098059, an inhibitor of mitogen-activated protein kinase kinases 1/2 (MEK1/2) that activates extracellular-regulated kinases 1/2 (ERK1/2). A novel inhibitory action was caused by chronic (7-day) administration of sodium valproate but not by two other bipolar disorder therapeutic agents, lithium and carbamazepine. Valproate treatment reduced carbachol-stimulated Egr-1 DNA binding activity by 60% but did not alter carbachol-induced activation of ERK1/2 or p38 or increases in Egr-1 protein levels. These results reveal that muscarinic receptors activate Egr-1 through a signaling cascade primarily encompassing protein kinase C, MEK1/2, and ERK1/2 and that valproate substantially inhibits Egr-1 DNA binding activity stimulated by carbachol or protein kinase C.  相似文献   

12.
13.
The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-β-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.  相似文献   

14.
Protein kinase C (PKC) delta becomes tyrosine phosphorylated in rat parotid acinar cells exposed to muscarinic and substance P receptor agonists, which initiate fluid secretion in this salivary cell. Here we examine the signaling components of PKCdelta tyrosine phosphorylation and effects of phosphorylation on PKCdelta activity. Carbachol- and substance P-promoted increases in PKCdelta tyrosine phosphorylation were blocked by inhibiting phospholipase C (PLC) but not by blocking intracellular Ca2+ concentration elevation, suggesting that diacylglycerol, rather than D-myo-inositol 1,4,5-trisphosphate production, positively modulated this phosphorylation. Stimuli-dependent increases in PKCdelta activity in parotid and PC-12 cells were blocked in vivo by inhibitors of Src tyrosine kinases. Dephosphorylation of tyrosine residues by PTP1B, a protein tyrosine phosphatase, reduced the enhanced PKCdelta activity. Lipid cofactors modified the tyrosine phosphorylation-dependent PKCdelta activation. Two PKCdelta regulatory sites (Thr-505 and Ser-662) were constitutively phosphorylated in unstimulated parotid cells, and these phosphorylations were not altered by stimuli that increased PKCdelta tyrosine phosphorylation. These results demonstrate that PKCdelta activity is positively modulated by tyrosine phosphorylation in parotid and PC-12 cells and suggest that PLC-dependent effects of secretagogues on salivary cells involve Src-related kinases.  相似文献   

15.
16.
17.
18.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

19.
We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.  相似文献   

20.
Chemokine receptor CCR7 directs mature dendritic cells (mDCs) to secondary lymph nodes where these cells regulate the activation of T cells. CCR7 also promotes survival in mDCs, which is believed to take place largely through Akt-dependent signaling mechanisms. We have analyzed the involvement of the AMP-dependent kinase (AMPK) in the control of CCR7-dependent survival. A pro-apoptotic role for AMPK is suggested by the finding that pharmacological activators induce apoptosis, whereas knocking down of AMPK with siRNA extends mDC survival. Pharmacological activation of AMPK also induces apoptosis of mDCs in the lymph nodes. Stimulation of CCR7 leads to inhibition of AMPK, through phosphorylation of Ser-485, which was mediated by Gi/Gβγ, but not by Akt or S6K, two kinases that control the phosphorylation of AMPK on Ser-485 in other settings. Using selective pharmacological inhibitors, we show that CCR7-induced phosphorylation of AMPK on Ser-485 is mediated by MEK and ERK. Coimmunoprecipitation analysis and proximity ligation assays indicate that AMPK associates with ERK, but not with MEK. These results suggest that in addition to Akt-dependent signaling mechanisms, CCR7 can also promote survival of mDCs through a novel MEK1/2-ERK1/2-AMPK signaling axis. The data also suggest that AMPK may be a potential target to modulate mDC lifespan and the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号