首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of blood biochemical parameters, including the activities of the plasma enzymes creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase and alkaline phosphatase, were measured in 23 athletes before, and immediately after a 56-km running race. Of the 23 athletes, 18 had previously completed standard 42-km marathon or longer (up to 90-km) ultra-marathon races, whereas not one of the other five athletes had previously run in a long-distance race. After the race, plasma CK and ASAT activities had both risen at least 280% more in the novice runners despite their much slower mean running speed (9.8 +/- 0.4 vs. 13.8 +/- 0.3 hm/h). There were no other inter-group differences in the absolute levels of the other measured biochemical parameters, although the rise in plasma calcium during the race was significantly greater in the experienced marathon runners. This study shows that either higher levels of training, or previous ultra-marathon racing experience, or both, is associated with lower immediate post-exercise levels of plasma enzyme activity. This is compatible with the finding that physical training reduces post-exercise plasma enzyme levels.  相似文献   

2.
Elevation of creatine kinase (CK) in serum after exertion is a reliable marker of skeletal muscle injury. Limited data exist on CK levels in conditioned athletes after endurance training and competition. Serum CK was measured by a kinetic UV method (normal < 100 U/L) in 15 long distance runners before (pre-race), 24 hours after (post-race) and four weeks following (post-race) the 1979 Boston Marathon. CK levels were elevated throughout the study. Mean values for all runners and for those finishing before and after three hours and 30 minutes are as follows: Post-race CK was significantly elevated among the ten faster as compared to the five slower runners (p = 0.025). Elevations of creatine kinase drawn 24 hours post-marathon are inversely related to finishing times among the runners tested.  相似文献   

3.
Cytokine changes after a marathon race.   总被引:8,自引:0,他引:8  
The influence of carbohydrate (1 l/h of a 6% carbohydrate beverage), gender, and age on pro- and anti-inflammatory plasma cytokine and hormone changes was studied in 98 runners for 1.5 h after two competitive marathon races. The marathoner runners were randomly assigned to carbohydrate (C, n = 48) and placebo (P, n = 50) groups, with beverages administered during the races in a double-blind fashion using color codes. Plasma glucose was higher and cortisol was lower in the C than in the P group after the race (P < 0.001). For all subjects combined, plasma levels of interleukin (IL)-10, IL-1 receptor antagonist (IL-1ra), IL-6, and IL-8 rose significantly immediately after the race and remained above prerace levels 1.5 h later. The pattern of change in all cytokines did not differ significantly between the 12 women and 86 men in the study and the 23 subjects > or =50 yr of age and the 75 subjects <50 yr of age. The pattern of change in IL-10, IL-1ra, and IL-8, but not IL-6, differed significantly between the C and the P group, with higher postrace values measured for IL-10 (109% higher) and IL-1ra (212%) in the P group and for IL-8 (42%) in the C group. In conclusion, plasma levels of IL-10, IL-1ra, IL-6, and IL-8 rose strongly in runners after a competitive marathon, and this was not influenced by age or gender. Carbohydrate ingestion, however, had a major effect in attenuating increases in cortisol and two anti-inflammatory cytokines, IL-10 and IL-1ra.  相似文献   

4.
The aim of this study was to investigate the relationship between changes in serum free amino acids, muscle fatigue and exercise-induced muscle damage during a half-ironman triathlon. Twenty-six experienced triathletes (age = 37.0 ± 6.8 yr; experience = 7.4 ± 3.0 yr) competed in a real half-ironman triathlon in which sector times and total race time were measured by means of chip timing. Before and after the race, a countermovement jump and a maximal isometric force test were performed, and blood samples were withdrawn to measure serum free amino acids concentrations, and serum creatine kinase levels as a blood marker of muscle damage. Total race time was 320 ± 37 min and jump height (-16.3 ± 15.2%, P < 0.001) and isometric force (-14.9 ± 9.8%; P = 0.007) were significantly reduced after the race in all participants. After the race, the serum concentration of creatine kinase increased by 368 ± 187% (P < 0.001). In contrast, the serum concentrations of essential (-27.1 ± 13.0%; P < 0.001) and non-essential amino acids (-24.4 ± 13.1%; P < 0.001) were significantly reduced after the race. The tryptophan/BCAA ratio increased by 42.7 ± 12.7% after the race. Pre-to-post changes in serum free amino acids did not correlate with muscle performance variables or post-race creatine kinase concentration. In summary, during a half-ironman triathlon, serum amino acids concentrations were reduced by > 20%. However, neither the changes in serum free amino acids nor the tryptophan/BCAA ratio were related muscle fatigue or muscle damage during the race.  相似文献   

5.
Many older athletes are capable of endurance performances equal to those of young runners who have higher maximal O2 uptakes (VO2max). To determine whether this is a result of differences in skeletal muscle characteristics, gastrocnemius muscle biopsy samples were obtained from eight master athletes [aged 63 +/- 6 (SD) yr] and eight young (aged 26 +/- 3 yr) runners. The young runners were matched with the master athletes for 10-km running performance and for their volume, pace, and type of training. Despite similar 10-km run times, VO2max was 11% lower (P less than 0.05) in the master athletes. Fiber type distribution did not differ between groups, with both groups having 60% type I and very few type IIb fibers. Succinate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase activities, however, were 31 and 24% higher in the master athletes compared with the matched young runners, whereas lactate dehydrogenase activity was 46% lower (all P less than 0.05). The capillary-to-fiber ratio was also greater in the master athletes; however, capillary density was similar in the two groups, because of the master athletes' 34% larger (P less than 0.05) type I fibers. These differences in skeletal muscle characteristics may explain the master athletes' ability to perform as well as some young runners despite having a lower VO2max.  相似文献   

6.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

7.
Short-course 'sprint' triathlons have become popular in recent years, often as a precursor to the longer full-course triathlons. We undertook a study investigating the haematological and biochemical changes that occur in novice triathletes between the start and finish and after each of the three legs of a short sprint triathlon involving swimming, cycling and running. The changes that occurred in the triathlon included a significant (P less than 0.003) decrease in weight from 71.7 kg, SD 7.9 to 70.3 kg, SD 7.6. Throughout the time span of the triathlon, the white blood cell count increased significantly (P less than 0.001), as did the platelet count (P less than 0.005) and plateletcrit (P less than 0.001). There were no significant changes during the period of the race in any of the other haematological variables measured. The biochemical variables measured were glucose, triglycerides, sodium, potassium, calcium, lactate dehydrogenase, creatinine and aspartate aminotransferase. Triglyceride, calcium and potassium values did not change between the pre- and post-race samplings. All other biochemical parameters showed a significant change (P less than 0.05 or better). Changes that occurred in the haematological and biochemical parameters between stages were many and varied. There was also a significant change in plasma volume during the swimming event (P less than 0.001), but this returned to normal during the later stages of the triathlon. In conclusion the changes that occurred during the triathlon were many and were similar to those reported elsewhere in the literature for longer events.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.

Background

To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon.

Methodology/Principal Findings

We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage.

Results

Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001).

Conclusions/significance

During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.  相似文献   

9.
During prolonged exercise, changes in the ionic milieu in and surrounding the muscle fibers may lead to fatigue or damage of the muscle and thereby impair performance. In 10 male subjects, we investigated the effects of 100 km running on muscle and plasma electrolyte contents, muscle Na+ -K+ pump content, and plasma concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH). After completion of a 100-km run, significant increases were found in plasma K+ (from 4.0 +/- 0.1 to 5.5 +/- 0.2 mM, P < 0.001), muscle Na+ -K+ pump content (from 334 +/- 11 to 378 +/- 17 pmol/g, P < 0.05), and total muscle Ca2+ content (from 0.84 +/- 0.03 to 1.02 +/- 0.04 micromol/g, P < 0.001). There was also a large increase in the plasma levels of the muscle-specific enzymes CK and LDH, which reached peak values at the end of the run and lasted several days after the run, indicating that a significant degree of muscle membrane leakage was present. The simultaneous occurrence of raised cellular Ca2+ content and muscle membrane leakage supports the theory that Ca2+ plays a role in the initiation of degenerative processes in muscles after severe exercise.  相似文献   

10.
"In a recent study of male and female ultra-marathoners in a 161-km ultra-marathon, the prevalence of exercise-associated hyponatremia (EAH) was higher than reported for marathoners. Regarding triathletes, the prevalence of EAH has been investigated in Ironman triathletes, but not in Triple Iron ultra-triathletes. The aim of this study was to investigate the prevalence of EAH in male ultra-triathletes competing in a Triple Iron ultra-triathlon over 11.4 km swimming, 540 km cycling, and 126.6 km running. Changes in body mass, fat mass, skeletal muscle mass, total body water, haematocrit, plasma volume, plasma sodium concentration ([Na ? ]) and urine specific gravity were determined in 31 male athletes with (means ± standard deviation) 42.1 ± 8.1 years of age, 77.0 ± 7.0 kg body mass, 1.78 ± 0.06 m body height and a BMI of 24.3 ± 1.7 kg/m2 in the 'Triple Iron Triathlon Germany'. Of the 31 finishers, eight athletes (26%) developed asymptomatic EAH. Body mass, fat mass, skeletal muscle mass, and haematocrit decreased, plasma volume increased ( P < 0.05), plasma [Na ?], total body water and urine specific gravity remained stable. The decrease in body mass was related to both the decrease in fat mass and skeletal muscle mass ( P < 0.05), but was not related to overall race time, the change in plasma [Na ? ], post-race plasma [Na ? ], or urine specific gravity. The prevalence of EAH was higher in these Triple Iron ultra-triathletes compared to existing reports on Ironman triathletes. Body fluid homeostasis remained stable in these ultra-triathletes although body mass decreased."  相似文献   

11.
This study investigated the changes in cardiorespiratory response and running performance of 9 male "Talent Identification" (TID) and 6 male Senior Elite (SE) Spanish National Squad triathletes during a specific cycle-run (C-R) test. The TID and SE triathletes (initial age 15.2 ± 0.7 vs. 23.8 ± 5.6 years, p = 0.03; V(O2)max 77.0 ± 5.6 vs. 77.8 ± 3.6 ml · kg(-1) · min(-1), nonsignificant) underwent 3 tests through the competitive period and the preparatory period, respectively, of 2 consecutive seasons: test 1 was an incremental cycle test to determine the ventilatory threshold (Th(vent)); test 2 (C-R) was 30-minute constant load cycling at the Th(vent) power output followed by a 3-km time-trial run; and test 3 (isolated control run [R]) was an isolated 3-km time-trial control run, in randomized counterbalanced order. In both seasons, the time required to complete the C-R 3-km run was greater than for R in TID (11:09 ± 00:24 vs. 10:45 ± 00:16 min:ss, p < 0.01 and 10:24 ± 00:22 vs. 10:04 ± 00:14, p = 0.006, for season 2005-2006 and 2006-2007, respectively) and SE (10:15 ± 00:19 vs. 09:45 ± 00:30, p < 0.001 and 09:51 ± 00:26 vs. 09:46 ± 00:06, p = 0.02 for season 2005-2006 and 2006-2007, respectively). Compared with the first season, the completion of the time-trial run was faster in the second season (6.6%, p < 0.01 and 6.4%, p < 0.01, for C-R and R tests, respectively) only in TID. Changes in post cycling run performance were accompanied by changes in pacing strategy, but there were only slight or nonsignificant changes in the cardiorespiratory response. Thus, the negative effect of cycling on performance may persist, independently of the period, over 2 consecutive seasons in TID and SE triathletes; however, improvements over time suggests that monitoring running pacing strategy after cycling may be a useful tool to control performance and training adaptations in TID.  相似文献   

12.
It is commonly assumed that creatine kinase (CK) activity in plasma is related to the state of an inflammatory response at 24-48 h, and also it has shown biphasic patterns after a marathon run. No information is available on CK isoenzymes after an ultra-marathon run. The purpose of the present study is to examine the CK isoenzymes after a 200 km ultra-marathon run and during the subsequent recovery. Blood samples were obtained during registration 1 2 h before the 200-km race and during the race at 100 km, 150 km and at the end of 200 km, as well as after a 24 h period of recovery. Thirty-two male ultra-distance runners participated in the study. Serum CPK showed a marked increase throughout the race and 24 h recovery period (p < 0.001). Serum CK during the race occurs mostly in the CK-MM isoform and only minutely in the CK-MB isoform and is unchanged in the CK-BB isoform. High-sensitivity C-reactive protein (hs-CRP), oestradiol, AST and ALT increased significantly from the pre-race value at 100 km and a further increase took place by the end of the 200 km run. The results of our study demonstrate a different release pattern of creatine kinase after an ultra-distance (200 km) run compared to the studies of marathon running and intense eccentric exercise, and changes in several biomarkers, indicative of muscle damage during the race, were much more pronounced during the latter half (100–200 km) of the race. However, the increases in plasma concentration of muscle enzymes may reflect not only structural damage, but also their rate of clearance.  相似文献   

13.
This study investigated the effect of 3 warm-up procedures on subsequent swimming and overall triathlon performance. Seven moderately trained, amateur triathletes completed 4 separate testing sessions comprising 1 swimming time trial (STT) and 3 sprint distance triathlons (SDT). Before each SDT, the athletes completed 1 of three 10-minute warm-up protocols including (a) a swim-only warm-up (SWU), (b) a run-swim warm-up (RSWU), and (c) a control trial of no warm-up (NWU). Each subsequent SDT included a 750-m swim, a 500-kJ (~20 km) ergometer cycle and a 5-km treadmill run, which the athletes performed at their perceived race intensity. Blood lactate, ratings of perceived exertion, core temperature, and heart rate were recorded over the course of each SDT, along with the measurement of swim speed, swim stroke rate, and swim stroke length. There were no significant differences in individual discipline split times or overall triathlon times between the NWU, SWU, and RSWU trials (p > 0.05). Furthermore, no difference existed between trials for any of the swimming variables measured (p > 0.05) nor did they significantly differ from the preliminary STT (p > 0.05). The findings of this study suggest that warming up before an SDT provides no additional benefit to subsequent swimming or overall triathlon performance.  相似文献   

14.
"The aim of this study was to investigate whether the characteristics of anthropometry, training or previous performance were related to an Ironman race time in recreational female Ironman triathletes. These characteristics were correlated to an Ironman race time for 53 recreational female triathletes in order to determine the predictor variables, and so be able to predict an Ironman race time for future novice triathletes. In the bi-variate analysis, no anthropometric characteristic was related to race time. The weekly cycling kilometers (r = -0.35) and hours (r = -0.32), as well as the personal best time in an Olympic distance triathlon (r = 0.49) and in a marathon (r = 0.74) were related to an Ironman race time (< 0.05). Stepwise multiple regressions showed that both the personal best time in an Olympic distance triathlon ( P = 0.0453) and in a marathon (P = 0.0030) were the best predictors for the Ironman race time (n = 28, r2 = 0.53). The race time in an Ironman triathlon might be partially predicted by the following equation (r2 = 0.53, n = 28): Race time (min) = 186.3 + 1.595 × (personal best time in an Olympic distance triathlon, min) + 1.318 × (personal best time in a marathon, min) for recreational female Ironman triathletes."  相似文献   

15.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

16.
Skeletal muscle damage size (SMDS) was assessed in 35 women and 34 men runners after a 42.2-km race using a method developed for estimation of myocardial infarct size. SMDS was computed according to the following equation: SMDS = (BW) (K) (CKr), where BW is body weight, K is a constant, and CKr is the cumulative amount of creatine kinase (CK) released over time. The method takes into account CK distribution space, fractional disappearance rate of CK, proportion of CK degraded in skeletal muscle, and proportion of CK released into the circulation. Assumptions are made regarding the relative amount of CK lost from skeletal muscle into the circulation. The SMDS in men, 808 +/- 1,229 (SD) CK g-eq was significantly (P less than 0.05) greater than in women, 160 +/- 147 (SD) CK g-eq. The ranges of SMDS (CK g-eq) were 23-5,397 in men and 7-624 in women. A significant difference (P less than 0.05) also remained after correction for body surface area; men 432 +/- 583 (SD), women 100 +/- 63 (SD) CK g-eq/m2. In men and women, no significant correlation existed between SMDS and age or marathon finish time. Although relatively theoretical, results indicate that greater skeletal muscle damage occurred in men vs. women runners after a marathon. Whether the release of CK from skeletal muscle is the result of irreversible and/or reversible injury has not yet been determined.  相似文献   

17.
We investigated whether a cooling vest worn during an active warm-up enhances 5-km run time in the heat. Seventeen competitive runners (9 men, maximal oxygen uptake = 66.7 +/- 5.9 ml x kg(-1) x min(-1); 8 women, maximal oxygen uptake = 58.0 +/- 3.2 ml x kg(-1) x min(-1)) completed two simulated 5-km runs on a treadmill after a 38-min active warm-up during which they wore either a T-shirt (C) or a vest filled with ice (V) in a hot, humid environment (32 degrees C, 50% relative humidity). Wearing the cooling vest during warm-up significantly (P < 0.05) blunted increases in body temperature, heart rate (HR), and perception of thermal discomfort during warm-up compared with control. At the start of the 5-km run, esophageal, rectal, mean skin, and mean body temperatures averaged 0.3, 0.2, 1.8, and 0.4 degrees C lower; HR averaged 11 beats/min lower; and perception of thermal discomfort (5-point scale) averaged 0.6 point lower in V than C. Most of these differences were eliminated during the first 3.2 km of the run, and these variables were not different at the end. The 5-km run time was significantly lower (P < 0.05) by 13 s in V than C, with a faster pace most evident during the last two-thirds of the run. We conclude that a cooling vest worn during active warm-up by track athletes enhances 5-km run performance in the heat. Reduced thermal and cardiovascular strain and perception of thermal discomfort in the early portion of the run appear to permit a faster pace later in the run.  相似文献   

18.
Although East African black athletes dominate endurance running events, it is unknown whether black and white endurance runners with similar racing ability, matched for training, may differ in their skeletal muscle biochemical phenotype. Thirteen Xhosa (XR) and 13 Caucasian (CR) endurance runners were recruited and matched for 10-km performance, average preferred racing distance (PRD(A)), and training volume. Submaximal and maximal exercise tests were done, and vastus lateralis muscle biopsies were taken. XR were significantly lighter and shorter than CR athletes but had similar maximum oxygen consumption corrected for body weight and peak treadmill speed (PTS). XR had lower plasma lactate concentrations at 80% PTS (P < 0.05) compared with CR. Also, XR had more type IIA (42.4 +/- 9.2 vs. 31.3 +/- 11.5%, P < 0.05) and less type I fibers (47.8 +/- 10.9 vs. 63.1 +/- 13.2%, P < 0.05), although oxidative enzyme activities did not differ. Furthermore, XR compared with CR had higher lactate dehydrogenase (LDH) activity in homogenate muscle samples (383 +/- 99 vs. 229 +/- 85 mumol.min(-1).g dry weight(-1), P < 0.05) and in both type IIa (P < 0.05) and type I (P = 0.05) single-fiber pools. A marked difference (P < 0.05) in the composition of LDH isoform content was found between the two groups with XR having higher levels of LDH(5-4) isoforms (skeletal muscle isozymes; LDH-M) than CR, which was not accounted for by fiber-type differences alone. These results confirm differences in muscle phenotype and physiological characteristics, particularly associated with high-intensity running.  相似文献   

19.
Many well-trained elite older runners have performances comparable to those of much younger nonelite runners. We sought to determine whether the physiological determinants of endurance performance in two groups of such athletes were the same. Eight master athletes (age 56 +/- 5 yr) were matched on the basis of 10-km performance and training to younger runners (age 25 +/- 3 yr). The master athletes had a 9% lower maximum O2 uptake (VO2max) (P less than 0.05) than the matched young runners, despite the similarity in their performance. Running economy was not different between these groups. However, the master athletes attained a 2.5-mM blood lactate level during steady-state exercise at a higher percentage of their VO2max (P less than 0.05), although both groups attained this lactate level at the same running speed and VO2. Thus, despite having significantly lower VO2max values, the older athletes were able to perform as well as the younger runners because they were able to work closer to their VO2max for the duration of the race.  相似文献   

20.
Heat shock protein 72 (HSP72) is the most inducible HSP, but is not always increased in lymphocytes following exercise. This field study examined whether lymphocyte HSP72 was increased in hyperthermic (Trec>39.0 °C) male athletes following a 14 km competitive race in cool conditions (ambient temperature 11.2 °C). A comparison was also made between control runners (n=7) and those treated for exertional heat illness (n=9). Lymphocyte HSP72 was not increased in control runners immediately post- compared with pre-race, and there was no difference between both groups of runners. A second study of the race (ambient temperature 14.6 °C) found that lymphocyte HSP72 in control (n=7) and treated (n=9) athletes was higher 2 days post- compared with immediately post-race (p<0.01) and these increases were correlated with post-exercise Trec (p<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号