首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The rate of ferric ion transfer from Fe(III)-bleomycin to apotransferrin was increased in the presence of orthophosphate, ATP and ADP, while AMP was without effect. 2. Ortho phosphate activation probably involves formation of a Fe(III)-bleomycin-phosphate complex. The optical absorption of Fe(III)-bleomycin at 450 nm is enhanced in the presence of phosphate. 3. ATP and ADP remove the ferric ion from the iron-drug complex; thus making the ferric ion readily available for uptake by apotransferrin. 4. Low concentrations of ATP, ADP and AMP, also enhance the 450 nm absorption of the iron-drug complex. Higher ATP and ADP concentrations reduce both the 450 and 384 nm absorption of Fe(III)-bleomycin.  相似文献   

2.
1. Citrate binds to Fe(III)-bleomycin, removing the ferric ion from the iron-drug complex; a reaction that may be of physiological significance. 2. Low concentrations of citrate markedly enhance the rate of iron transfer from Fe(III)-bleomycin to apotransferrin; an iron binding plasma protein.  相似文献   

3.
The chemotherapeutic agent, bleomycin, forms a 1:1complex with both Fe(III) and Fe(II). The rate offerric ion transfer from bleomycin toapotransferrin is rather slow. However, when ascorbate was added toFe(III)-bleomycin priorto exposure to apotransferrin, the transfer rate was markedly increased. Ascorbatereadilyreduces Fe(III)-bleomycin to Fe(II)-bleomycin. A second order rate constant of 2.4 mM min wasestimated for this reaction. Fe(II)-bleomycinimmediately combines with O 2 , generating the so-called'acti-vatedbleomycin' complex. The data suggest that a reduced form of iron-bleomycin more readilydonatesits iron ion to apotransferrin. Reoxidation of ferrous ions, andFe(III)-transferrin formation occur rapidly.  相似文献   

4.
In the presence of NADPH and O2, NADPH-cytochrome P-450 reductase was found to activate Fe(III)-bleomycin A2 for DNA strand scission. Consistent with observations made previously when cccDNA was incubated in the presence of bleomycin and Fe(II) + O2 or Fe(III) + C6H5IO, degradation of DNA by NADPH-cytochrome P-450 reductase activated Fe(III)-bleomycin A2 produced both single- and double-strand nicks with concomitant formation of malondialdehyde (precursors). Cu(II)-bleomycin A2 also produced nicks in SV40 DNA following activation with NADPH-cytochrome P-450 reductase, but these were not accompanied by the formation of malondialdehyde (precursors). These findings confirm the activity of copper bleomycin in DNA strand scission and indicate that it degrades DNA in a fashion that differs mechanistically from that of iron bleomycin. The present findings also-establish the most facile pathways for enzymatic activation of Fe(III)-bleomycin and Cu(II)-bleomycin, provide data concerning the nature of the activated metallobleomycins, and extend the analogy between the chemistry of cytochrome P-450 and bleomycin.  相似文献   

5.
The inhibition of Fe(II)-bleomycin activation, by a large excess of DNA, is overcome by rat liver microsomes in the presence of NADPH. This release of inhibition, as indicated by increased yields of base propenal from DNA scission, is enhanced by menadione, is inhibited by superoxide dismutase, and is therefore dependent on superoxide anion. Microsomal activation of Fe(II)-bleomycin doubles the stoichiometry of base propenal yield compared to that obtained upon self-activation of the drug; 0.5 mol of base propenal is formed and 0.5 mol of NADPH is oxidized per mol of Fe(II)-bleomycin. In the presence of a large excess of DNA, Cu(II)-bleomycin is not reduced and Fe(III)-bleomycin is neither reduced nor activated by microsomes in cases where activation of Fe(II)-bleomycin is maximal. We suggest that in vivo, electron transport enzymes at or near the nucleus can stimulate the activation of Fe(II)-bleomycin under conditions where self-activation does not readily occur.  相似文献   

6.
The spin trapping method was applied to elucidate the active intermediate during the enzymatic reduction of Fe(III)-bleomycin in the presence of NADPH-cytochrome P-450 reductase and O2. Although the hydroxyl adducts to spin traps were observed, the adduct formation was not inhibited by catalase nor by SOD. Furthermore, in Tris-HCl buffer, no Tris adduct to the spin trap was observed. The results lead to the conclusion that there is no participation of free OH radical in the reactive intermediate in this reduction system. Effect of phosphate buffer on the reactivity of Fe(II)-bleomycin and spin state of Fe(III)-bleomycin were discussed.  相似文献   

7.
EPR data show that Fe(III)-bleomycin intercalates with DNA, or that the Fe(III) coordination sphere has a fixed geometrical configuration with respect to the DNA helical axis. An analysis of the data from oriented DNA fibers, drawn from a viscous gel, shows that the angle between the fiber axis and the normal to a plane containing the Fe(III) ion and ligands ranges between 15 and 30 degrees. The principal g values for the low-spin Fe(III)-bleomycin-DNA complex at pH 7.5 are 2.45, 2.18 and 1.87  相似文献   

8.
EPR data show that Fe(III)-bleomycin intercalates with DNA, or that the Fe(III) coordination sphere has a fixed geometrical configuration with respect to the DNA helical axis. An analysis of the data from oriented DNA fibers, drawn from a viscous gel, shows that the angle between the fiber axis and the normal to a plane containing the Fe(III) ion and ligands ranges between 15 and 30 degrees. The principal g values for the low-spin Fe(III)-bleomycin-DNA complex at pH 7.5 are 2.45, 2.18 and 1.87.  相似文献   

9.
Binding of ferric ions to the hormone glycine-extended gastrin17 is essential for biological activity (Pannequin, J., et al. (2002). J. Biol. Chem. 277: 48602-48609). The aims of the current study were to determine the properties of the complex between recombinant human progastrin6-80 and ferric ions. The stoichiometry and affinity of ferric ion binding were determined by fluorescence spectroscopy. The selectivity of metal ion binding and the stability of the 59Fe(III) progastrin6-80 complex were determined by equilibrium dialysis. The stoichiometry of 2.5 +/- 0.1 moles Fe/mole progastrin, and the apparent dissociation constant of 2.2 +/- 0.1 microM, were similar to the values previously determined for glycine-extended gastrin17 at pH 4.0. Of the four trivalent and seven divalent metal ions tested, only ferrous and ferric ions bound to progastrin6-80. The ferric ion-progastrin complex was extremely stable, with a half-life of 117 +/- 8 days at pH 7.6 and 25 degrees C. We conclude that recombinant human progastrin6-80 selectively binds ferrous and ferric ions with high affinity in a stable 2:1 complex.  相似文献   

10.
Gessa  C.  Deiana  S.  Premoli  A.  Ciurli  A. 《Plant and Soil》1997,190(2):289-299
The transfer of several metal ions from the soil to the plant absorbing cells is mediated principally by organic molecules of low molecular weight with complexing and reducing activity, among which caffeic acid (CAF) is particularly important. Here we report the results of a survey which deals with the oxidation of CAF by the Fe(III) ions bound to a polygalacturonate network (Fe(III)-PGA network). The interaction between Fe(III) and CAF was studied by using Fe(III)-PGA networks equilibrated in the 2.4-7.0 pH range by means of kinetic and spectroscopic methods. The reducing power was found to depend on the nature of the Fe(III)-PGA network complexes: when the ferric ion was complexed only by the PGA carboxylic groups, a high redox activity was observed, whereas the Fe(III) reduction was found to be lower when a hydroxylic group was inserted in the Fe(III) coordination sphere. The iron complexed in the network was protected from hydrolysis reactions, as shown by the high pH values at which its reduction occurred. Two different fractions of Fe(II) produced were identified, one diffusible and another exchangeable with CaCl2 6.0 mM. The existence of the exchangeable form was attributed to the electrostatic interaction of the Fe(II) ions with the carboxylate groups of the fibrils and with the degradation products of CAF. The arrangement of the fibrils was altered following the substitution of Ca(II) by Fe(III) ions and was restored following the reduction of Fe (III) by CAF.  相似文献   

11.
Aims:  To investigate Klebsiella oxytoca strain BAS-10 growth on ferric citrate under anaerobic conditions for exopolysaccharide (EPS) production and localization on cell followed by the purification and the EPS determination of the iron-binding stability constant to EPS or biotechnological applications.
Methods and Results:  Klebsiella oxytoca ferments ferric citrate under anaerobic conditions and produces a ferric hydrogel, whereas ferrous ions were formed in solution. During growth, cells precipitate and a hydrogel formation was observed: the organic material was constituted of an EPS bound to Fe(III) ions, this was found by chemical analyses of the iron species and transmission electron microscopy of the cell cultures. Iron binding to EPS was studied by cyclic voltammetric measurements, either directly on the hydrogel or in an aqueous solutions containing Fe(III)-citrate and purified Fe(III)-EPS. From the voltammetric data, the stability constant for the Fe(III)-EPS complex can be assumed to have values of approx. 1012–1013. It was estimated that this is higher than for the Fe(III)-citrate complex.
Conclusions:  The production of Fe(III)-EPS under anaerobic conditions is a strategy for the strain to survive in mine drainages and other acidic conditions. This physiological feature can be used to produce large amounts of valuable Fe(III)-EPS, starting from a low cost substrate such as Fe(III)-citrate.
Significant and Impact of the Study:  The data herein demonstrates that an interesting metal-binding molecule can be produced as a novel catalyst for a variety of potential applications and the EPS itself is a valuable source for rhamnose purification.  相似文献   

12.
In this study the effects of initial concentration of Fe(II) and Fe(III) ions as well as initial pH on the bioleaching of a low-grade sphalerite ore in a leaching column over a period of 120 days with and without bacteria were investigated. Four different modifications of medium were used as column feed solutions to investigate the effects of initial concentration of Fe(II) and Fe(III) ions on zinc extraction. The experiments were carried out using a bench-scale, column leaching reactor, which was inoculated with mesophilic iron oxidizing bacteria, Acidithiobacillus ferrooxidans, initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran). The effluent solutions were periodically analyzed for Zn, total Fe, Fe(II) and Fe(III) concentrations as well as pH values. Bacterial population was measured in the solution (free cells). Maximum zinc recovery in the column was achieved about 76% using medium free of initial ferrous ion and 11.4 g/L of ferric ion (medium 2) at pH 1.5. The extent of leaching of sphalerite ore with bacteria was significantly higher than that without bacteria (control) in the presence of ferrous ions. Fe(III) had a strong influence in zinc extraction, and did not adversely affect the growth of the bacteria population.  相似文献   

13.
1. Catecholamines were found to reduce Fe(III)-bleomycin to the ferrous state. Aminochrome, an oxidation product of catecholamine, rapidly appears in the reaction solution. 2. The purple colour of Fe(III)-catecholamine is also detected in the reaction solution, suggesting that iron is transferred from bleomycin to catecholamine. 3. Gel filtration studies confirm that catecholamines are able to take up iron from the iron-drug complex.  相似文献   

14.
A study of the Fe(II) complexes of P-3A (1) and (−)-desacetamido P-3A (2) abilities to cleave duplex DNA was conducted through examination of single-strand and double-strand cleavage of supercoiled φX174 RFI DNA (Form I) in the presence of O2 to produce relaxed (Form II) and linear (Form III) DNA, respectively. Like Fe(II)-bleomycin A2 and deglycobleomycin A2, Fe(II)-1 and 2 effectively produced both single- and double-strand cleavage of supercoiled φX174 DNA. Unlike Fe(II)-bleomycin A2 or deglycobleomycin A2, Fe(II)-1 and 2 were found to cleave duplex w794 DNA with no discemible sequence selectively suggesting that the polynucleotide recognition of the C-terminus tetrapeptide S subunit of the bleomycins including the bithiazole may dominate the bleomycin A2 DNA cleavage selectivity.  相似文献   

15.
Iron-57 M?ssbauer, electron paramagnetic resonance (EPR) and H-1 nuclear magnetic resonance (NMR) studies of iron-bleomycin complexes in the pH range from 1.0 to 6.0 are reported. Sequential protonation of the ligands produces a variety of high-spin and low-spin complexes of the metal. Of particular interest is the reversible equilibrium between Fe(III)- and oxygen-stable Fe(II)-bleomycin. Below pH 3.5 Fe(II) complexes form, with maximal reduction occurring at approximately pH 2. At still lower pH, Fe(III) complexes unassociated with bleomycin become dominant. The observed reduction in the absence of exogenous reducing agents suggests the possible involvement of intramolecular autoreduction in bleomycin-mediated DNA degradation.  相似文献   

16.
We have investigated the action of the chemotherapeutic agent Fe(II)-bleomycin on yeast tRNA(Phe), an RNA of known three-dimensional structure. In the absence of Mg2+ ions, the RNA is cleaved preferentially at two major positions, A31 and G53, both of which are located at the terminal base pairs of hairpin loops, and coincide with the location of tight Mg2+ binding sites. A fragment of the tRNA (residues 47-76) containing the T stem-loop is also cleaved specifically at G53. Cleavage of both the intact tRNA and the tRNA fragment is abolished in the presence of physiological concentrations of Mg2+ (> 0.5 mM). Since Fe(II) is not displaced from bleomycin under these conditions, we infer that tight binding of Mg2+ to tRNA excludes productive interactions between Fe(II)-bleomycin and the RNA. These results also show that loss of cleavage is not due to Mg(2+)-dependent formation of tertiary interactions between the D and T loops. In contrast, cleavage of synthetic DNA analogs of the anticodon and T stem-loops is not detectably inhibited by Mg2+, even at concentrations as high as 50 mM. In addition, the site specificities observed in cleavage of RNA and DNA differ significantly. From these results, and from similar findings with other representative RNA molecules, we suggest that the cleavage of RNA by Fe(II)-bleomycin is unlikely to be important for its therapeutic action.  相似文献   

17.
The coordination cage of the metal center in Fe(II)-bleomycin has been proposed to consist of the secondary amines in β-aminoalanine, the pyrimidinylpropionamide and imidazole rings, and the amide nitrogen in β-hydroxyhistidine as equatorial ligands, and the primary amine in β-aminoalanine and either the carbamoyl group in mannose or a solvent molecule occupying the axial sites. With the aim of supporting or not supporting coordination of a water molecule to the metal center in Fe(II)-bleomycin, the solution structure of Fe(II)-azide-bleomycin has been derived from NMR data. The structural changes that occur in Fe(II)-bleomycin upon azide binding have been monitored by comparing the experimental results with those obtained from the calculated structures for both bleomycin adducts. The results of this investigation strongly support a model of Fe(II)-bleomycin with six endogenous ligands as the most likely structure held in solution by this metallobleomycin in the absence of DNA.  相似文献   

18.
An ethylene-forming enzyme which forms ethylene from 2-oxo-4-methylthiobutyric acid (KMBA) was purified to an electrophoretically homogeneous state from a cell-free extract of Cryptococcus albidus IFP 0939. The presence of KMBA, NADH, Fe(III) chelated to EDTA and oxygen were essential for the formation of ethylene. When ferric ions, as Fe(III)EDTA, in the reaction mixture were replaced by Fe(II)EDTA under aerobic conditions, the non-enzymatic formation of ethylene was observed. Under anaerobic conditions in the presence of Fe(III)EDTA and NADH, the enzyme reduced 2 mol of Fe(III) with 1 mol of NADH to give 2 mol of Fe(II) and 1 mol NAD+, indicating that the ethylene-forming enzyme is an NADH-Fe(III)EDTA oxidoreductase. The role of NADH:Fe(III)EDTA oxidoreductase activity in the formation in vivo ethylene from KMBA is discussed.  相似文献   

19.
The molecular modeling of Co(II)-bleomycin previously performed by us through NMR and molecular dynamics indicates that the most favorable structure for this complex is six-coordinate, with the secondary amine in beta-aminoalanine, the N5 and N1 nitrogens in the pyrimidine and imidazole rings, respectively, and the amide nitrogen in beta-hydroxyhistidine as equatorial ligands. The primary amine and either the carbamoyl group or a solvent molecule are proposed to occupy the axial sites. In this report, the results of the molecular modeling of Fe(II)-bleomycin are presented. The NMR data for the ferrous derivative of the drug have already been reported by us, and were used here to generate the necessary restraints for this modeling work. For Co(II)-bleomycin, two new models exhibiting N-carbamoyl ligation to the metal centers were also assayed and compared with the ones previously examined. The results of this investigation on Fe(II)- and Co(II)-bleomycin are most consistent with a six-coordinate structure with five endogenous N-donors and a solvent molecule or the carbamoyl group as the sixth ligand. Comparisons of the best Co(II)- and Fe(II)-bleomycin models with the NMR-generated structures for some relevant metallo-BLMs favor the model with only endogenous ligands and N-carbamoyl ligation as the structure probably held in solution by both Co(II)- and Fe(II)-bleomycin.  相似文献   

20.
Iron-limited cells of the green alga Chlorella kesslerii use a reductive mechanism to acquire Fe(III) from the extracellular environment, in which a plasma membrane ferric reductase reduces Fe(III)-chelates to Fe(II), which is subsequently taken up by the cell. Previous work has demonstrated that synthetic chelators both support ferric reductase activity (when supplied as Fe(III)-chelates) and inhibit ferric reductase. In the present set of experiments we extend these observations to naturally-occurring chelators and their analogues (desferrioxamine B mesylate, schizokinen, two forms of dihydroxybenzoic acid) and also two formulations of the commonly-used herbicide N-(phoshonomethyl)glycine (glyphosate). The ferric forms of the larger siderophores (desferrioxamine B mesylate, schizokinen) and Fe(III)-N-(phoshonomethyl)glycine (as the isopropylamine salt) all supported rapid rates of ferric reductase activity, while the iron-free forms inhibited reductase activity. The smaller siderophores/siderophore precursors, 2,3- and 3,4-dihydroxybenzoic acids, did not support high rates of reductase in the ferric form but did inhibit reductase activity in the iron-free form. Bioassays indicated that Fe(III)-chelates that supported high rates of ferric reductase activity also supported a large stimulation in the growth of iron-limited cells, and that an excess of iron-free chelator decreased the growth rate. With respect to N-(phosphonomethyl)glycine, there were differences between the pure compound (free acid form) and the most common commercial formulation (which also contains isopropylamine) in terms of supporting and inhibiting ferric reductase activity and growth. Overall, these results suggest that photosynthetic organisms that use a reductive strategy for iron acquisition both require, and are potentially simultaneously inhibited by, ferric chelators. Furthermore, these results also may provide an explanation for the frequently contradictory results of N-(phosphonomethyl)glycine application to crops: we suggest that low concentrations of this molecule likely solubilize Fe(III), making it available for plant growth, but that higher (but sub-lethal) concentrations decrease iron acquisition by inhibiting ferric reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号