首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of extracellular recordings of action potentials the stretch responses of single neurons of Clarke's column were analysed. The neurons were monosynaptically activated from Ia afferents of both ipsilateral gastrocnemius muscles. When stretch cycles of more than 0.2 mm amplitude and frequencies above 2 Hz were applied to the gastrocnemius muscles, the discharging was found to cease during the period of stretch release, whereas the average discharge rate was found to increase. In the frequency range between 0.1 and 10 Hz a sinewave of stretch frequency — the response sinewave — fitted to the non-zero bins of cycle histograms described the stretch response at small and large amplitudes equally well. The amount of increase in the average firing rate corresponded quite well to the portion of the response sinewave below the zero discharge rate. This indicates that the occurance of discharge pauses and the relation of the average discharge rate to frequency and amplitude of stretch can be described successfully by a half-wave rectification of the response at zero discharge rate. If one regards the shape of cycle histograms to be a nearly sinusoidal modulation plus a non-linear clipping at zero the application of linear systems analysis is worthwhile in describing the response not only at very small amplitudes but in the whole range of muscle stretch.  相似文献   

2.
Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.  相似文献   

3.
Experiments were conducted in anaesthetized and spinalized cats to measure the extent to which the non-linear response of Ia afferent fibers to sinusoidal muscle stretch as expressed by the peristimulus-time-histograms, PSTHs, can be transformed into a linear one by means of the superposition of random stretch ("mechanical noise"). The gastrocnemius muscles of one hind leg were stretched and the response to sinewave muscle stretch (amplitudes between 0.01 and 4.0 mm, frequencies between 0.1 and 20 Hz) were investigated while band-limited mechanical noise was superimposed on the sinewave stretch. The random stretch upper cut-off frequency was varied between 60 and 300 Hz; the displacements were normally distributed. The noise amplitude sigma, i.e. the standard deviation of the displacement distributions, was varied systematically between 0.002 and 0.4 mm. Mechanical noise was very effective in raising the mean discharge rate. Added to the sinusoidal stretch it prevented the cessation of firing during the release phase of the stretch cycle, or at least reduced the duration of discharge pauses, i.e., a linearization occurred. In general, the larger the noise amplitude, the more the amplitude of the fundamental harmonic component was attenuated and the phase lead reduced. Apart from this rule the particular combination of superimposing small noise (sigma less than 0.02 mm) on small sinewave stretch (A less than 0.02 mm) could enhance the depth of sinusoidal modulation of cycle histograms (compared with responses to pure sinusoids). Linearizing the sinewave response by additional noise allowed the estimation of frequency response characteristics in the otherwise non-linear range of amplitudes (sinewave amplitude 0.5-1.0 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A motion platform was developed that oscillates an animal in a foot-to-head direction (z-plane). The platform varies the frequency and intensity of acceleration, imparting periodic sinusoidal inertial forces (pG(z)) to the body. The aim of the study was to characterize ventilation produced by the noninvasive motion ventilator (NIMV) in animals with healthy and diseased lungs. Incremental increases in pG(z) (acceleration) with the frequency held constant (f = 4 Hz) produced almost linear increases in minute ventilation (VE). Frequencies of 2-4 Hz produced the greatest VE and tidal volume (VT) for any given acceleration between +/-0.2 and +/-0.8 G. Increasing the force due to acceleration produced proportional increases in both transpulmonary and transdiaphragmatic pressures. Increasing transpulmonary pressure by increasing pG(z) produced linear increases in VT, similar to spontaneous breathing. NIMV reversed deliberately induced hypoventilation and normalized the changes in arterial blood gases induced by meconium aspiration. In conclusion, a novel motion platform is described that imparts periodic sinusoidal acceleration forces at moderate frequencies (4 Hz) to the whole body in the z-plane. These forces, when properly adjusted, are capable of highly effective ventilation of normal and diseased lungs. Such noninvasive ventilation is accomplished at airway pressures equivalent to atmospheric or continuous positive airway pressure, with acceleration forces less than +/-1 G(z).  相似文献   

5.
Transmission of sensory information was calculated for the isolated frog muscle spindle receptor, using Shannon's information measure. Sinusoidal movements, random noise stretches, and sinusoids with superimposed auxiliary noise were applied as stimuli. In addition, the static prestretch level of the intrafusal muscle bundle was adjusted between resting length (L0) and L0 + 600 micron, so that the analysis of the information transmission properties covered the entire dynamic range of the sensory receptor organ. Sinusoidal stretches below 2 Hz evoked smoothly modulated cycle histograms, which were approximately linearly related to the stimulating sinewave. The transinformation rates under these conditions were generally low (5-17 bit X s-1), regardless of the amplitude of the applied movement. Increasing prestretch enhanced the modulation depth of the cycle histograms considerably, but increased the transinformation rates by less than 10 bit X s-1. By contrast, sinusoids above 2 Hz evoked clearly nonlinear cycle histograms, because each action potential was firmly phase-locked to a small segment of the stretch cycle. Under these conditions the transinformation rates grew larger with increasing stimulus frequency and approached 130 bit X s-1 at 60 Hz. Small amplitude sinusoidal stretches, however, evoked considerable transinformation rates in the high frequency region only then, when the spindle receptor was extended to higher prestretch levels. Random stretches evoked transinformation rates between 5 and 30 bit X s-1 depending on both the prestretch level and the intensity of the noise stimulus. The linear response components carried only about 25% of the transinformation rates transmitted by both the linear and nonlinear response components. Auxiliary noise stimuli greatly improved the information transmission of sinusoidal stretches. For example, a pure sinusoid evoked 5 bit X s-1. Adding a noise signal with equal energy to the sinusoidal movement elicited 20 bit X s-1. This facilitation effect of auxiliary noise was restricted to low frequency sinusoidal stimuli. The present results are discussed with respect to the information transmission properties of various sensory systems evaluated by either the same or different information processing procedure as that used in the present study. The functional significance of high transinformation rates sent by the muscle spindle to the central nervous system is discussed with respect to motor control.  相似文献   

6.
Time-resolved x-ray diffraction studies were done on frog skeletal muscles with synchrotron radiation by applying sinusoidal length changes of frequency 10 Hz and amplitude approximately 1% to isometrically contracting muscles at approximately 17 degrees C. Distinct periodic intensity changes were observed in the 14.3-nm myosin meridional reflection and the equatorial 1,0 and 1,1 reflections. Response of the 14.3-nm reflection to the sinusoidal length change was nonlinear, as evidenced by a large second harmonic in its oscillatory intensity change, whereas the response of the equatorial 1,1 reflection was closely linear, as evidenced by almost sinusoidal intensity change. Intensity change of the 1,0 reflection was nearly antiphase to that of the 1,1 reflection. Integral widths of the 14.3-nm meridional reflection measured along the meridian and of the equatorial 1,1 reflection remained almost constant during tension development, while that of the 1,0 reflection tended to decrease. The widths of the 14.3-nm meridional reflection perpendicular to the meridian and of the equatorial 1,0 reflection appeared to undergo oscillatory changes in response to the sinusoidal length changes.  相似文献   

7.
Behavioral responses and eye movements of fish during linear acceleration were reviewed. It is known that displacement of otoliths in the inner ear leads to body movements and/or eye movements. On the ground, the utriculus of the vestibular system is stimulated by otolith displacement caused by gravitational and inertial forces during horizontal acceleration of whole body. When the acceleration is imposed on the fish's longitudinal axis, the fish showed nose-down and nose-up posture for tailward and noseward displacement of otolith respectively. These responses were understood that the fish aligned his longitudinal body axis in a plane perpendicular to the direction of resultant force vector acting on the otoliths. When the acceleration was sideward, the fish rolled around his longitudinal body axis so that his back was tilted against the direction in which the inertial force acted on the otoliths. Linear acceleration applied to fish's longitudinal body axis evoked torsional eye movement. Direction of torsion coincided with the direction of acceleration, which compensate the change of resultant force vector produced by linear acceleration and gravity. Torsional movement of left and right eye coordinated with each other. In normal fish, both sinusoidal and rectangular acceleration of 0.1G could evoke clear eye torsion. Though the amplitude of response increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Removal of the otolith on one side reduced the response amplitude of both eyes. The torsion angle evoked by rectangular acceleration was smaller than that evoked by sinusoidal acceleration in both normal and unilaterally labyrinthectomized fish. These results suggest that eye torsion of fish include both static and dynamic components.  相似文献   

8.
Botulinum type-A (BTX-A) neurotoxin exerts a paralytic effect on muscles and is used increasingly to treat a variety of muscle spasticity disorders. While its pathogenesis for muscle-induced weakness has been well elucidated, the functional effects of BTX-A administration are incomplete. Specifically, weakness as a function of muscle length and stimulation frequency has only been investigated qualitatively in a few muscles and the possible effect of the toxin on non-target muscles, although considered possible based on laboratory experiments, has not been studied widely and the functional implications remain unknown. Therefore, the purpose of this study was to measure the functional implications of BTX-A on force production and possible weakness of a target muscle and a non-injected neighbouring muscle. The cat soleus was chosen as the target muscle and was injected with 3.2-3.5U of BTX-A/kg in one hind limb, while the soleus of the other hind limb served as a non-injected control. Force-length properties within and exceeding the functional range of motion were determined at frequencies of stimulation of 10, 30 and 50Hz. Force-length properties of the adjacent non-injected plantaris were also determined in the experimental and contralateral hind limb. Four weeks following BTX-A injections, peak soleus forces were decreased by 30% (50Hz), 29% (30Hz) and 29% (10Hz) and peak plantaris forces were decreased by 11% (50Hz), 16% (30Hz) and 16% (10Hz), in the experimental compared to the contralateral hind limb. Absolute BTX-associated force loss was significantly different at all frequencies of stimulation and all lengths for the soleus, while in the plantaris there was a significant force loss across long (> or = -4mm) but not short muscle lengths. Decreases in peak force were independent of the stimulation frequency. We concluded from the results of this study that BTX-A injection in the target muscle caused a measurable effect on force production and that force production was decreased in non-target neighbouring muscles at and near lengths of peak force production. These results are of particular importance in therapeutic procedures where isolated muscles are targeted for treatment. They should also be considered in neurophysiological studies in which BTX-A injections are used to selectively diminish muscle function.  相似文献   

9.
10.
Envelope following responses were measured in two bottlenose dolphins in response to sinusoidal amplitude modulated tones with carrier frequencies from 20 to 60 kHz and modulation rates from 100 to 5,000 Hz. One subject had elevated hearing thresholds at higher frequencies, with threshold differences between subjects varying from ±4 dB at 20 and 30 kHz to +40 dB at 50 and 60 kHz. At each carrier frequency, evoked response amplitudes and phase angles were plotted with respect to modulation frequency to construct modulation rate transfer functions. Results showed that both subjects could follow the stimulus envelope components up to at least 2,000 Hz, regardless of carrier frequency. There were no substantial differences in modulation rate transfer functions for the two subjects suggesting that reductions in hearing sensitivity did not result in reduced temporal processing ability. In contrast to earlier studies, phase data showed group delays of approximately 3.5 ms across the tested frequency range, implying generation site(s) within the brainstem rather than the periphery at modulation rates from 100 to 1,600 Hz. This discrepancy is believed to be the result of undersampling of the modulation rate during previous phase measurements.  相似文献   

11.
The stick insect Carausius morosus maintains the distance between the substrate and its body. The underlying feed-back servo mechanism has been analyzed in intact animals under open loop conditions by changing the body-substrate distance in a sinusoidal fashion. The center position z c has been varied as parameter and the force the animal elicits along its high axis has been measured. The response amplitude A is a nonlinear function of z c. This nonlinear relationship between A and z c is most probably caused by the relationship between the torque excerted at the joints and the measured force. The responses to sinusoidal stimulation reveal band-pass character of the feed-back loop. Due to the nonlinearity of the system the average value of the response to sinusoidal disturbances depends upon the frequency of modulation. The change of the average value with the frequency of modulation is partially due to cocontraction of the extensor and flexor muscles.  相似文献   

12.
Effects of broad frequency vibration on cultured osteoblasts   总被引:6,自引:0,他引:6  
Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts.  相似文献   

13.
The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1-4 Hz). Experiments were performed in vitro (27 degrees C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was approximately 15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was approximately 10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.  相似文献   

14.
An accurate estimation of tympanic membrane stiffness is important for realistic modelling of middle ear mechanics. Tympanic membrane stiffness has been investigated extensively under either quasi-static or dynamic loading conditions. It is known that biological tissues are sensitive to strain rate. Therefore, in this work, the mechanical behaviour of the tympanic membrane was studied under both quasi-static and dynamic loading conditions. Experiments were performed on the pars tensa of four gerbil tympanic membranes. A custom-built indentation apparatus was used to perform in situ tissue indentations and testing was done applying both quasi-static and dynamic sinusoidal indentations up to 8.2?Hz. The unloaded shape of the tympanic membrane was measured and used to create specimen-specific finite element models to simulate the experiments. The frequency dependent Young's modulus of each specimen was then estimated by an inverse analysis in which the error between experimental and simulated indentation data was optimised for each indentation frequency separately. Using an 8?μm central region thickness, we found Young's moduli between 71 and 106?MPa (n = 4) at 0.2?Hz indentation frequency. A standard linear viscoelastic model and a viscoelastic model with a continuous relaxation spectrum were used to derive a complex modulus in the frequency domain. Due to experimental limitations, the indentation frequency upper limit was 8.2?Hz. The average relative modulus increase in this domain was 14% and the increase was the strongest below 6?Hz.  相似文献   

15.
The angle of the coxa-trochanter (C-T) joint in the stick insect Carausius morosus is controlled by a negative feedback mechanism. It is shown that the trochanteral hair plate alone functions as the feedback transducer and that the rhomboid hair plate is not involved in the feedback loop.The properties of the C-T control system were investigated by means of force measurements. The results cannot be adequately described in all details by either a fractional differentiator model, a model which fits many sensory systems, or a nonlinear bandpass filter, a model which fits the force response of the femur-tibia feedback loop. The fractional differentiator model adequately describes the frequency response of the open-loop system to sinusoidal stimulation with 34 deg stimulus amplitude. However, the responses to sinusoidal and steplike stimulation with 10 deg stimulus amplitude do not fit this model. They are better described by the model of a nonlinear bandpass filter.The possible contribution of mechanical properties of the musculature and the joint to the total force response is discussed. It is suggested that cocontractions occurring at higher stimulus frequencies alters the muscle properties and enables the animal to respond to stimulus frequencies above the upper corner frequency of the active feedback loop.  相似文献   

16.
Responses of most single neurons of the torus semicircularis ofRana ridibunda to stimuli of characteristic frequency and with low (10–30%) sinusoidal amplitude modulation were considerably stronger than those of the same neurons to pure tones. Analysis of phase histograms synchronized with the period of modulation was used to study dependence of the response on the frequency of modulation. In some cells the degree of modulation of the phase histogram fell steadily with an increase in modulation frequency, but in others a maximum was found in the 10–20 Hz region. Usually modulations of the phase histogram were significantly greater than stimulus modulation. The phase angle between the maximum of stimulus amplitude and the maximum of the unit response increased as an approximately linear function of the increase in modulation frequency.N. N. Andreev Acoustic Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 264–271, May–June, 1980.  相似文献   

17.
During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force-time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force-time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance.  相似文献   

18.
Skeletal muscle relaxation behaviour in compression has been previously reported, but the anisotropic behaviour at higher loading rates remains poorly understood. In this paper, uniaxial unconfined cyclic compression tests were performed on fresh porcine muscle samples at various fibre orientations to determine muscle viscoelastic behaviour. Mean compression level of 25% was applied and cycles of 2% and 10% amplitude were performed at 0.2–80 Hz. Under cycles of low frequency and amplitude, linear viscoelastic cyclic relaxation was observed. Fibre/cross-fibre results were qualitatively similar, but the cross-fibre direction was stiffer (ratio of 1.2). In higher amplitude tests nonlinear viscoelastic behaviour with a frequency dependent increase in the stress cycles amplitude was found (factor of 4.1 from 0.2 to 80 Hz).The predictive capability of an anisotropic quasi-linear viscoelastic model previously fitted to stress-relaxation data from similar tissue samples was investigated. Good qualitative results were obtained for low amplitude cycles but differences were observed in the stress cycle amplitudes (errors of 7.5% and 31.8%, respectively, in the fibre/cross-fibre directions). At higher amplitudes significant qualitative and quantitative differences were evident. A nonlinear model formulation was therefore developed which provided a good fit and predictions to high amplitude low frequency cyclic tests performed in the fibre/cross-fibre directions. However, this model gave a poorer fit to high frequency cyclic tests and to relaxation tests. Neither model adequately predicts the stiffness increase observed at frequencies above 5 Hz.Together with data previously presented, the experimental data presented here provide a unique dataset for validation of future constitutive models for skeletal muscle in compression.  相似文献   

19.
The objective was to investigate muscle fatigue measuring changes in force output and force tremor and electromyographic activity (EMG) during two sustained maximal isometric contractions for 60s: (1) concurrent hand grip and elbow flexion (HG and EF); or (2) hand grip and elbow extension (HG and EE). Each force tremor amplitude was decomposed into four frequency bands (1-3, 4-10, 11-20, and 21-50Hz). Surface EMGs were recorded from the flexor digitorum superficialis (FDS), extensor digitorum (ED), biceps brachii (BB) and lateral head of triceps brachii (TB). The HG and EF forces for the HG and EF and the HG force for the HG and EE declined rapidly, whereas the EE force remained almost constant near to the initial value for the first 40s and then declined. The decrease in EMG amplitude was observed not for the FDS muscle but for the ED muscle. The HG tremor amplitude for each frequency band showed similar decreasing rate, whereas the decreases in EF and EE tremor amplitudes for the lower band (below 10Hz) were slower than those for the higher band (above 11Hz). The neuromuscular mechanisms underlying muscle fatigue during sustained maximal concurrent contractions of hand grip and elbow flexion or extension are discussed.  相似文献   

20.
Strips of isolated rat diaphragm muscle were attached to a servomotor-transducer apparatus, and the muscle length was cycled in a sinusoidal fashion about the length at which maximum isometric twitch force was developed, Lo. The amplitude of the length displacement (excursion amplitude) and rate of cycling were varied between 3 and 13% Lo and 1-4 Hz respectively. The muscle was tetanically stimulated (100 Hz, supramaximal voltage, stimulus duration (duty cycle) 20% of the length cycle period) during the shortening stage of the imposed length cycle at the phase that yielded maximum net positive work. The force and displacement of the muscle were recorded. Work per cycle was calculated from the area of the loop formed by plotting force against length for one full stretch-shorten cycle. Work per cycle decreased, but power increased, as cycle frequency was increased from 1 to 4 Hz. Maximum work done per cycle was about 12.8 J/kg at a cycle frequency of 1 Hz. Maximum mean power developed was about 27 W/kg and occurred at a cycle frequency of 4 Hz. Work and power were maximum at an excursion amplitude of 13% of Lo (i.e., Lo +/- 6.5%). Measured work and power output are considerably less than values estimated from length-tension and force-velocity curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号