首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein‐protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein‐protein interactions. Cross‐docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross‐docking simulations of 358 proteins with 2 different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity‐sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross‐docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, that is, partners not included in the original cross‐docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners.  相似文献   

2.
Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites through effector molecules. Owing to their significance in determining protein function, the identification of protein functional and regulatory binding sites is widely acknowledged as an important biological problem. In this work, we present a novel binding site prediction method, Active and Regulatory site Prediction (AR-Pred), which supplements protein geometry, evolutionary, and physicochemical features with information about protein dynamics to predict putative active and allosteric site residues. As the intrinsic dynamics of globular proteins plays an essential role in controlling binding events, we find it to be an important feature for the identification of protein binding sites. We train and validate our predictive models on multiple balanced training and validation sets with random forest machine learning and obtain an ensemble of discrete models for each prediction type. Our models for active site prediction yield a median area under the curve (AUC) of 91% and Matthews correlation coefficient (MCC) of 0.68, whereas the less well-defined allosteric sites are predicted at a lower level with a median AUC of 80% and MCC of 0.48. When tested on an independent set of proteins, our models for active site prediction show comparable performance to two existing methods and gains compared to two others, while the allosteric site models show gains when tested against three existing prediction methods. AR-Pred is available as a free downloadable package at https://github.com/sambitmishra0628/AR-PRED_source .  相似文献   

3.
MOTIVATION: Identifying the location of ligand binding sites on a protein is of fundamental importance for a range of applications including molecular docking, de novo drug design and structural identification and comparison of functional sites. Here, we describe a new method of ligand binding site prediction called Q-SiteFinder. It uses the interaction energy between the protein and a simple van der Waals probe to locate energetically favourable binding sites. Energetically favourable probe sites are clustered according to their spatial proximity and clusters are then ranked according to the sum of interaction energies for sites within each cluster. RESULTS: There is at least one successful prediction in the top three predicted sites in 90% of proteins tested when using Q-SiteFinder. This success rate is higher than that of a commonly used pocket detection algorithm (Pocket-Finder) which uses geometric criteria. Additionally, Q-SiteFinder is twice as effective as Pocket-Finder in generating predicted sites that map accurately onto ligand coordinates. It also generates predicted sites with the lowest average volumes of the methods examined in this study. Unlike pocket detection, the volumes of the predicted sites appear to show relatively low dependence on protein volume and are similar in volume to the ligands they contain. Restricting the size of the pocket is important for reducing the search space required for docking and de novo drug design or site comparison. The method can be applied in structural genomics studies where protein binding sites remain uncharacterized since the 86% success rate for unbound proteins appears to be only slightly lower than that of ligand-bound proteins. AVAILABILITY: Both Q-SiteFinder and Pocket-Finder have been made available online at http://www.bioinformatics.leeds.ac.uk/qsitefinder and http://www.bioinformatics.leeds.ac.uk/pocketfinder  相似文献   

4.
The similarity comparison of binding sites based on amino acid between different proteins can facilitate protein function identification. However, Binding site usually consists of several crucial amino acids which are frequently dispersed among different regions of a protein and consequently make the comparison of binding sites difficult. In this study, we introduce a new method, named as chemical and geometric similarity of binding site (CGS-BSite), to compute the ligand binding site similarity based on discrete amino acids with maximum-weight bipartite matching algorithm. The principle of computing the similarity is to find a Euclidean Transformation which makes the similar amino acids approximate to each other in a geometry space, and vice versa. CGS-BSite permits site and ligand flexibilities, provides a stable prediction performance on the flexible ligand binding sites. Binding site prediction on three test datasets with CGS-BSite method has similar performance to Patch-Surfer method but outperforms other five tested methods, reaching to 0.80, 0.71 and 0.85 based on the area under the receiver operating characteristic curve, respectively. It performs a marginally better than Patch-Surfer on the binding sites with small volume and higher hydrophobicity, and presents good robustness to the variance of the volume and hydrophobicity of ligand binding sites. Overall, our method provides an alternative approach to compute the ligand binding site similarity and predict potential special ligand binding sites from the existing ligand targets based on the target similarity.  相似文献   

5.
ProPred1: prediction of promiscuous MHC Class-I binding sites   总被引:5,自引:0,他引:5  
SUMMARY: ProPred1 is an on-line web tool for the prediction of peptide binding to MHC class-I alleles. This is a matrix-based method that allows the prediction of MHC binding sites in an antigenic sequence for 47 MHC class-I alleles. The server represents MHC binding regions within an antigenic sequence in user-friendly formats. These formats assist user in the identification of promiscuous MHC binders in an antigen sequence that can bind to large number of alleles. ProPred1 also allows the prediction of the standard proteasome and immunoproteasome cleavage sites in an antigenic sequence. This server allows identification of MHC binders, who have the cleavage site at the C terminus. The simultaneous prediction of MHC binders and proteasome cleavage sites in an antigenic sequence leads to the identification of potential T-cell epitopes. AVAILABILITY: Server is available at http://www.imtech.res.in/raghava/propred1/. Mirror site of this server is available at http://bioinformatics.uams.edu/mirror/propred1/ Supplementary information: Matrices and document on server are available at http://www.imtech.res.in/raghava/propred1/page2.html  相似文献   

6.
7.
F Guo  SC Li  L Wang  D Zhu 《BMC bioinformatics》2012,13(1):158-25
ABSTRACT: BACKGROUND: The ability to predict protein-protein binding sites has a wide range of applications,including signal transduction studies, de novo drug design, structure identification andcomparison of functional sites. The interface in a complex involves two structurallymatched protein subunits, and the binding sites can be predicted by identifying structuralmatches at protein surfaces. RESULTS: We propose a method which enumerates "all" the configurations (or poses) between twoproteins (3D coordinates of the two subunits in a complex) and evaluates eachconfiguration by the interaction between its components using the Atomic Contact Energyfunction. The enumeration is achieved efficiently by exploring a set of rigidtransformations. Our approach incorporates a surface identification technique and amethod for avoiding clashes of two subunits when computing rigid transformations. Whenthe optimal transformations according to the Atomic Contact Energy function areidentified, the corresponding binding sites are given as predictions. Our results show thatthis approach consistently performs better than other methods in binding siteidentification. CONCLUSIONS: Our method achieved a success rate higher than other methods, with the prediction qualityimproved in terms of both accuracy and coverage. Moreover, our method is being able topredict the configurations of two binding proteins, where most of other methods predictonly the binding sites. The software package is available athttp://sites.google.com/site/guofeics/dobi for non-commercial use.  相似文献   

8.
Identification of protein biochemical functions based on their three-dimensional structures is now required in the post-genome-sequencing era. Ligand binding is one of the major biochemical functions of proteins, and thus the identification of ligands and their binding sites is the starting point for the function identification. Previously we reported our first trial on structure-based function prediction, based on the similarity searches of molecular surfaces against the functional site database. Here we describe the extension of our first trial by expanding the search database to whole heteroatom binding sites appearing within the Protein Data Bank (PDB) with the new analysis protocol. In addition, we have determined the similarity threshold line, by using 10 structure pairs with solved free and complex structures. Finally, we extensively applied our method to newly determined hypothetical proteins, including some without annotations, and evaluated the performance of our methods.  相似文献   

9.
Prediction of DNA-binding residues from sequence   总被引:2,自引:0,他引:2  
MOTIVATION: Thousands of proteins are known to bind to DNA; for most of them the mechanism of action and the residues that bind to DNA, i.e. the binding sites, are yet unknown. Experimental identification of binding sites requires expensive and laborious methods such as mutagenesis and binding essays. Hence, such studies are not applicable on a large scale. If the 3D structure of a protein is known, it is often possible to predict DNA-binding sites in silico. However, for most proteins, such knowledge is not available. RESULTS: It has been shown that DNA-binding residues have distinct biophysical characteristics. Here we demonstrate that these characteristics are so distinct that they enable accurate prediction of the residues that bind DNA directly from amino acid sequence, without requiring any additional experimental or structural information. In a cross-validation based on the largest non-redundant dataset of high-resolution protein-DNA complexes available today, we found that 89% of our predictions are confirmed by experimental data. Thus, it is now possible to identify DNA-binding sites on a proteomic scale even in the absence of any experimental data or 3D-structural information. AVAILABILITY: http://cubic.bioc.columbia.edu/services/disis.  相似文献   

10.
Knowing the ligand or peptide binding site in proteins is highly important to guide drug discovery, but experimental elucidation of the binding site is difficult. Therefore, various computational approaches have been developed to identify potential binding sites in protein structures. However, protein and ligand flexibility are often neglected in these methods due to efficiency considerations despite the recognition that protein–ligand interactions can be strongly affected by mutual structural adaptations. This is particularly true if the binding site is unknown, as the screening will typically be performed based on an unbound protein structure. Herein we present DynaBiS, a hierarchical sampling algorithm to identify flexible binding sites for a target ligand with explicit consideration of protein and ligand flexibility, inspired by our previously presented flexible docking algorithm DynaDock. DynaBiS applies soft-core potentials between the ligand and the protein, thereby allowing a certain protein–ligand overlap resulting in efficient sampling of conformational adaptation effects. We evaluated DynaBiS and other commonly used binding site identification algorithms against a diverse evaluation set consisting of 26 proteins featuring peptide as well as small ligand binding sites. We show that DynaBiS outperforms the other evaluated methods for the identification of protein binding sites for large and highly flexible ligands such as peptides, both with a holo or apo structure used as input.  相似文献   

11.
Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross‐docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross‐docking predictions using the area under the specificity‐sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding‐site predictions resulting from the cross‐docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408–1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

12.
The identification of protein biochemical functions based on their three-dimensional structures is strongly required in the post-genome-sequencing era. We have developed a new method to identify and predict protein biochemical functions using the similarity information of molecular surface geometries and electrostatic potentials on the surfaces. Our prediction system consists of a similarity search method based on a clique search algorithm and the molecular surface database eF-site (electrostatic surface of functional-site in proteins). Using this system, functional sites similar to those of phosphoenoylpyruvate carboxy kinase were detected in several mononucleotide-binding proteins, which have different folds. We also applied our method to a hypothetical protein, MJ0226 from Methanococcus jannaschii, and detected the mononucleotide binding site from the similarity to other proteins having different folds.  相似文献   

13.
Nearly half of known protein structures interact with phosphate-containing ligands, such as nucleotides and other cofactors. Many methods have been developed for the identification of metal ions-binding sites and some for bigger ligands such as carbohydrates, but none is yet available for the prediction of phosphate-binding sites. Here we describe Pfinder, a method that predicts binding sites for phosphate groups, both in the form of ions or as parts of other non-peptide ligands, in proteins of known structure. Pfinder uses the Query3D local structural comparison algorithm to scan a protein structure for the presence of a number of structural motifs identified for their ability to bind the phosphate chemical group. Pfinder has been tested on a data set of 52 proteins for which both the apo and holo forms were available. We obtained at least one correct prediction in 63% of the holo structures and in 62% of the apo. The ability of Pfinder to recognize a phosphate-binding site in unbound protein structures makes it an ideal tool for functional annotation and for complementing docking and drug design methods. The Pfinder program is available at http://pdbfun.uniroma2.it/pfinder.  相似文献   

14.
Due to Ca2+‐dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet‐lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet‐lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large‐margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM‐binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome‐wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif‐based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub‐sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels .  相似文献   

15.
Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.  相似文献   

16.
17.
Protein binding sites are the places where molecular interactions occur. Thus, the analysis of protein binding sites is of crucial importance to understand the biological processes proteins are involved in. Herein, we focus on the computational analysis of protein binding sites and present structure-based methods that enable function prediction for orphan proteins and prediction of target druggability. We present the general ideas behind these methods, with a special emphasis on the scopes and limitations of these methods and their validation. Additionally, we present some successful applications of computational binding site analysis to emphasize the practical importance of these methods for biotechnology/bioeconomy and drug discovery.  相似文献   

18.
Identifying the interface between two interacting proteins provides important clues to the function of a protein, and is becoming increasing relevant to drug discovery. Here, surface patch analysis was combined with a Bayesian network to predict protein-protein binding sites with a success rate of 82% on a benchmark dataset of 180 proteins, improving by 6% on previous work and well above the 36% that would be achieved by a random method. A comparable success rate was achieved even when evolutionary information was missing, a further improvement on our previous method which was unable to handle incomplete data automatically. In a case study of the Mog1p family, we showed that our Bayesian network method can aid the prediction of previously uncharacterised binding sites and provide important clues to protein function. On Mog1p itself a putative binding site involved in the SLN1-SKN7 signal transduction pathway was detected, as was a Ran binding site, previously characterized solely by conservation studies, even though our automated method operated without using homologous proteins. On the remaining members of the family (two structural genomics targets, and a protein involved in the photosystem II complex in higher plants) we identified novel binding sites with little correspondence to those on Mog1p. These results suggest that members of the Mog1p family bind to different proteins and probably have different functions despite sharing the same overall fold. We also demonstrated the applicability of our method to drug discovery efforts by successfully locating a number of binding sites involved in the protein-protein interaction network of papilloma virus infection. In a separate study, we attempted to distinguish between the two types of binding site, obligate and non-obligate, within our dataset using a second Bayesian network. This proved difficult although some separation was achieved on the basis of patch size, electrostatic potential and conservation. Such was the similarity between the two interacting patch types, we were able to use obligate binding site properties to predict the location of non-obligate binding sites and vice versa.  相似文献   

19.
MOTIVATION: We are motivated by the fast-growing number of protein structures in the Protein Data Bank with necessary information for prediction of protein-protein interaction sites to develop methods for identification of residues participating in protein-protein interactions. We would like to compare conditional random fields (CRFs)-based method with conventional classification-based methods that omit the relation between two labels of neighboring residues to show the advantages of CRFs-based method in predicting protein-protein interaction sites. RESULTS: The prediction of protein-protein interaction sites is solved as a sequential labeling problem by applying CRFs with features including protein sequence profile and residue accessible surface area. The CRFs-based method can achieve a comparable performance with state-of-the-art methods, when 1276 nonredundant hetero-complex protein chains are used as training and test set. Experimental result shows that CRFs-based method is a powerful and robust protein-protein interaction site prediction method and can be used to guide biologists to make specific experiments on proteins. AVAILABILITY: http://www.insun.hit.edu.cn/~mhli/site_CRFs/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

20.
To investigate the functional sites on a protein and the prediction of binding sites (residues)in proteins, it is often required to identify the binding site residues at different distance threshold from protein three dimensional (3D)structures. For the study of a particular protein chain and its interaction with the ligand in complex form, researchers have to parse the output of different available tools or databases for finding binding-site residues. Here we have developed a tool for calculating amino acid contact distances in proteins at different distance threshold from the 3D-structure of the protein. For an input of protein 3D-structure, ContPro can quickly find all binding-site residues in the protein by calculating distances and also allows researchers to select the different distance threshold, protein chain and ligand of interest. Additionally, it can also parse the protein model (in case of multi model protein coordinate file)and the sequence of selected protein chain in Fasta format from the input 3D-structure. The developed tool will be useful for the identification and analysis of binding sites of proteins from 3D-structure at different distance thresholds. AVAILABILITY: IT CAN BE ACCESSED AT: http://procarb.org/contpro/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号