首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PPM1D is a p53-inducible Ser/Thr phosphatase. One of the main functions of PPM1D in normal cells is to act as a negative regulator of the p53 tumor suppressor by dephosphorylating p53 and several kinases. PPM1D is considered an oncoprotein owing to both its functions and the fact that gene amplification and overexpression of PPM1D are reported in several tumors. Recently, PPM1D mutations resulting in C-terminal truncated alterations were found in brainstem gliomas and colorectal cancers, and these mutations enhanced the activity of PPM1D. Therefore, C-terminal truncated PPM1D should be also considered as a potential candidate target of anticancer drugs. Here we showed that combination treatment with PPM1D-specific inhibitor SPI-001 and doxorubicin suppressed cell viability of HCT-116 cells overexpressing C-terminal truncated PPM1D through p53 activation compared with doxorubicin alone. Our results suggest that combination treatment with PPM1D inhibitor and doxorubicin may be a potential anti-cancer treatment in PPM1D-mutated cancer cells.  相似文献   

2.
3.
4.
5.
6.
Protein phosphatase, Mg2+/Mn2+ dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC.  相似文献   

7.
8.
Protein phosphatase magnesium-dependent 1, delta (PPM1D) is a member of the PPM1 (formerly PP2C) protein phosphatase family, and is induced in response to DNA damage. The overexpression of PPM1D is thought to exert oncogenic effects through the inhibition of tumor suppressor proteins. PPM1D shows high selectivity for the primary sequence in its substrates when compared with other phosphatases, but the mechanisms underlying substrate recognition by this enzyme is not clearly known. In our present study we wished to identify the active center and further elucidate the substrate preference of PPM1D, and to this end performed sequence alignments among the human PPM1 type phosphatases. The results of this analysis clearly showed that the putative active site residues of PPM1D are highly conserved among the PPM1 family members. Phosphatase analyses using PPM1D mutants further identified the metal-chelating residues and a phosphate binding residue. In kinetic analyses using a series of phosphorylated p53 peptide analogs, the introduction of acidic residues into the region flanking the sites of dephosphorylation enhanced their affinity with PPM1D. Homology modeling of PPM1D also revealed that PPM1D contains two characteristic loops, a Pro-residue rich loop on the opposite side of the active site and a basic-residue rich loop in the vicinity of the active site in the catalytic domain. Interestingly, nonhydrolyzable AP4-3E peptides derived from the acidic p53 peptide analogs very effectively blocked PPM1D activity in an uncompetitive manner, suggesting that AP4-3E peptides may be useful lead compounds in the development of novel inhibitors of PPM1D.  相似文献   

9.
The cyclin-dependent kinase inhibitor p21 plays a critical role in regulating cell cycle and cell proliferation. We previously cloned the dog p21 gene and found that unlike human p21, dog p21 is expressed as 2 isoforms due to the proline-directed phosphorylation at serine 123 (S123). Here, we identified that PPM1D, also called Wip1 and a Mg2+-dependent phosphatase, dephosphorylates dog p21 protein at serine 123. Specifically, we showed that the level of S123-phosphorylated dog p21 is increased by a PPM1D inhibitor in a dose-dependent manner. We also showed that over-expression of PPM1D decreases, whereas knockdown of PPM1D increases, the level of S123-phosphorylated dog p21 regardless of p53. Additionally, in vitro phosphatase assay was performed and showed that phosphorylated S123 in dog p21 is dephosphorylated by recombinant rPPM1D, which contains the catalytic domain of human PPM1D (residue 1–420), but not by the phosphatase dead rPPM1D (D314A). Furthermore, dephosphorylation of S123 by rPPM1D can be abrogated by PPM1D inhibitor or by withdrawal of Mg2+. Finally, we showed that upon PPM1D inhibition, the level of S123-phosphorylated dog p21 was increased, concomitantly with decreased expression of cyclin A, cyclin B, Rb, and PCNA. Together, our results indicate that PPM1D functions as a phosphatase of dog p21 at serine 123 and plays a role in cell cycle control via p21.  相似文献   

10.
The cyclin-dependent kinase inhibitor p21 plays a critical role in regulating cell cycle and cell proliferation. We previously cloned the dog p21 gene and found that unlike human p21, dog p21 is expressed as 2 isoforms due to the proline-directed phosphorylation at serine 123 (S123). Here, we identified that PPM1D, also called Wip1 and a Mg2+-dependent phosphatase, dephosphorylates dog p21 protein at serine 123. Specifically, we showed that the level of S123-phosphorylated dog p21 is increased by a PPM1D inhibitor in a dose-dependent manner. We also showed that over-expression of PPM1D decreases, whereas knockdown of PPM1D increases, the level of S123-phosphorylated dog p21 regardless of p53. Additionally, in vitro phosphatase assay was performed and showed that phosphorylated S123 in dog p21 is dephosphorylated by recombinant rPPM1D, which contains the catalytic domain of human PPM1D (residue 1–420), but not by the phosphatase dead rPPM1D (D314A). Furthermore, dephosphorylation of S123 by rPPM1D can be abrogated by PPM1D inhibitor or by withdrawal of Mg2+. Finally, we showed that upon PPM1D inhibition, the level of S123-phosphorylated dog p21 was increased, concomitantly with decreased expression of cyclin A, cyclin B, Rb, and PCNA. Together, our results indicate that PPM1D functions as a phosphatase of dog p21 at serine 123 and plays a role in cell cycle control via p21.  相似文献   

11.
The metal-dependent phosphatase PPM1D (WIP1) is an important oncogene in cancer, with over-expression of the protein being associated with significantly worse clinical outcomes. In this communication we describe the discovery and optimization of novel 2,4-bisarylthiazoles that phenocopy the knockdown of PPM1D, without inhibiting its phosphatase activity. These compounds cause growth inhibition at nanomolar concentrations, induce apoptosis, activate p53 and display impressive cell-line selectivity. The results demonstrate the potential for targeting phenotypes in drug discovery when tackling challenging targets or unknown mechanisms.  相似文献   

12.
Protein phosphorylation plays central roles in a wide variety of signal transduction pathways and most phosphorylated proteins contain multi-phosphorylated sites. PPM1 type Ser/Thr protein phosphatase family is known to show rigid substrate specificity unlike other Ser/Thr phosphatase PPP family including PP1, PP2A and PP2B. PPM1 type phosphatases are reported to play important roles in growth regulation and in cellular stress signalling. In this study, we developed a phosphatase assay of PPM1D using phosphatase motif-specific antibody. PPM1D is a member of PPM1 type Ser/Thr phosphatase and known to dephosphorylate Ser(P)-Gln sequence. The gene amplification and overexpression of PPM1D were reported in many human cancers. We generated the monoclonal antibody specific for the Ser(P)-Gln sequence, named 3G9-H11. The specificity of this method using ELISA enables the convenient measurement of the dephosphorylation level of only PPM1D target residues of substrate peptides with multiple phosphorylated sites in the presence of multiple phosphatases. In addition, the antibody was applicable to immunoblotting assay for PPM1D function analysis. These results suggested that this method should be very useful for the PPM1D phosphatase assay, including high-throughput analysis and screening of specific inhibitors as anti-cancer drugs. The method using phosphatase motif-specific antibody can be applied to other PPM1 phosphatase family.  相似文献   

13.
PPM1D (PP2Cδ or Wip1) was identified as a wild-type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of several different cancers. Previously, we reported the development of a cyclic thioether peptide with low micromolar inhibitory activity toward PPM1D. Here, we describe important improvements in the inhibitory activity of this class of cyclic peptides and also present a binding model based upon the results. We found that specific interaction of an aromatic ring at the X1 position and negative charge at the X5 and X6 positions significantly increased the inhibitory activity of the cyclic peptide, with the optimized molecule having a K(i) of 110 nM. To the best of our knowledge, this represents the highest inhibitory activity reported for an inhibitor of PPM1D. We further developed an inhibitor selective for PPM1D over PPM1A with a K(i) of 2.9 μM. Optimization of the cyclic peptide and mutagenesis experiments suggest that a highly basic loop unique to PPM1D is related to substrate specificity. We propose a new model for the catalytic site of PPM1D and inhibition by the cyclic peptides that will be useful both for the subsequent design of PPM1D inhibitors and for identification of new substrates.  相似文献   

14.
15.
Yamaguchi H  Durell SR  Feng H  Bai Y  Anderson CW  Appella E 《Biochemistry》2006,45(44):13193-13202
The wild-type p53-induced phosphatase, Wip1 (PP2Cdelta or PPM1D) is a member of the protein phosphatase 2C (PP2C) family and functions as a negative regulator of the p38 MAP kinase-p53 signaling pathway. PPM1D is amplified or Wip1 is overexpressed in several human cancers, and it acts as a weak oncogene. Although inhibition of Wip1 may have therapeutic value, no specific inhibitors are available. In this study, we designed phosphopeptide inhibitors for Wip1 on the basis of its optimal substrate sequence. We found that phosphoserine-containing diphosphorylated peptides with the sequence pSXpY inhibited Wip1 phosphatase activity, whereas phosphothreonine-containing peptides with the sequence pTXpY were physiological substrates. Moreover, the X residue in the pSXpY sequence modulated inhibitor activity, and beta-branched amino acid-substituted (Ile or Val) phosphopeptides showed high inhibitory potencies. A thioether cyclic phosphopeptide c(MpSIpYVA) had a K(i) <1.0 microM. Two serine/threonine phosphatases, PP2Calpha and PP2A, were not significantly inhibited by the cyclic phosphopeptide with a nonhydrolyzable phosphoserine mimetic. A homology model of Wip1 bound to a cyclic phosphopeptide and site-directed mutagenesis helped to identify residues important for Wip1 inhibitor selectivity among the PP2C family. These results provide the first proof of concept of a specific inhibitor of the catalytic site of Wip1 and should be useful for developing potential anti-cancer drugs.  相似文献   

16.
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.  相似文献   

17.
Wip1, a human protein Ser/Thr phosphatase also called PPM1D, stands for wild type p53 induced phosphatase 1. Emerging evidences indicate that Wip1 can act as an oncogene largely by turning off DNA damage checkpoint responses. Here we report an unrecognized role of Wipl in normally growing cells. Wip1 can be induced by wild type p53 under not only stressed but also non-stressed conditions. It can trigger G2/M arrest in wild type p53 containing cells, which was attributed to the decreased Cdc2 kinase activity resulting at least partly from a high level of inhibitory tyrosine phosphorylation on Cdc2 protein at Tyr-15. Furthermore, we also found that Wip1 not only causes G2/M arrest but also decreases cell death triggered by microtubule assembly inhibitor in mouse fibroblasts when wild type p53 function was restored. These results indicate that Wip1 can provide ample time for wild type p53-containing cells to prepare entry into mitosis and avoid encountering mitotic catastrophe. Therefore, Wipl may play important roles in cell/tissue homeostasis maintained by wild type p53 under normal conditions, enhancing our understanding of how p53 makes cell-fate decisions.  相似文献   

18.
Wip1, a human protein Ser/Thr phosphatase also called PPM1D, stands for wild-type p53 induced phosphatase 1. Emerging evidences indicate that Wip1 can act as an oncogene largely by turning off DNA damage checkpoint responses. Here we report an unrecognized role of Wipl in normally growing cells. Wip1 can be induced by wild-type p53 under not only stressed but also non-stressed conditions. It can trigger G2/M arrest in wild-type p53 containing cells, which was attributed to the decreased Cdc2 kinase activity resulting at least partly from a high level of inhibitory tyrosine phosphorylation on Cdc2 protein at Tyr-15. Furthermore, we also found that Wip1 not only causes G2/M arrest but also decreases cell death triggered by microtubule assembly inhibitor in mouse fibroblasts when wild-type p53 function was restored. These results indicate that Wip1 can provide ample time for wild-type p53-containing cells to prepare entry into mitosis and avoid encountering mitotic catastrophe. Therefore, Wipl may play important roles in cell/tissue homeostasis maintained by wild-type p53 under normal conditions, enhancing our understanding of how p53 makes cell-fate decisions.Key words: p53, Wip1, cell homeostasis, cell arrest, cell death  相似文献   

19.
p53, one of the most commonly mutated genes in human cancers, is thought to be associated with cancer development. Hence, screening and identifying natural or synthetic compounds with anti-cancer activity via p53-independent pathway is one of the most challenging tasks for scientists in this field. Compound JKA97 (methoxy-1-styryl-9H-pyrid-[3,4-b]-indole) is a small molecule synthetic anti-cancer agent, with unknown mechanism(s). In this study we have demonstrated that the anti-cancer activity of JKA97 is associated with apoptotic induction via p53-independent mechanisms. We found that co-incubation of human colon cancer HCT116 cells with JKA97 inhibited HCT116 cell anchorage-independent growth in vitro and tumorigenicity in nude mice and also induced a cell apoptotic response, both in the cell culture model and in a tumorigenesis nude mouse model. Further studies showed that JKA97-induced apoptosis was dramatically impaired in Bax knock-out (Bax(-/-)) HCT116 cells, whereas the knock-out of p53 or PUMA did not show any inhibitory effects. The p53-independent apoptotic induction by JKA97 was confirmed in other colon cancer and hepatocarcinoma cell lines. In addition, our results showed an induction of Bax translocation and cytochrome c release from the mitochondria to the cytosol in HCT116 cells, demonstrating that the compound induces apoptosis through a Bax-initiated mitochondria-dependent pathway. These studies provide a molecular basis for the therapeutic application of JKA97 against human cancers with p53 mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号