首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the problem of scheduling divisible loads on arbitrary graphs with the objective to minimize the total processing time of the entire load submitted for processing. We consider an arbitrary graph network comprising heterogeneous processors interconnected via heterogeneous links in an arbitrary fashion. The divisible load is assumed to originate at any processor in the network. We transform the problem into a multi-level unbalanced tree network and schedule the divisible load. We design systematic procedures to identify and eliminate any redundant processor–link pairs (those pairs whose consideration in scheduling will penalize the performance) and derive an optimal tree structure to obtain an optimal processing time, for a fixed sequence of load distribution. Since the algorithm thrives to determine an equivalent number of processors (resources) that can be used for processing the entire load, we refer to this approach as resource-aware optimal load distribution (RAOLD) algorithm. We extend our study by applying the optimal sequencing theorem proposed for single-level tree networks in the literature for multi-level tree for obtaining an optimal solution. We evaluate the performance for a wide range of arbitrary graphs with varying connectivity probabilities and processor densities. We also study the effect of network scalability and connectivity. We demonstrate the time performance when the point of load origination differs in the network and highlight certain key features that may be useful for algorithm and/or network system designers. We evaluate the time performance with rigorous simulation experiments under different system parameters for the ease of a complete understanding.  相似文献   

2.
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks.  相似文献   

3.
We study a subset of the movie collaboration network, http://www.imdb.com, where only adult movies are included. We show that there are many benefits in using such a network, which can serve as a prototype for studying social interactions. We find that the strength of links, i.e., how many times two actors have collaborated with each other, is an important factor that can significantly influence the network topology. We see that when we link all actors in the same movie with each other, the network becomes small-world, lacking a proper modular structure. On the other hand, by imposing a threshold on the minimum number of links two actors should have to be in our studied subset, the network topology becomes naturally fractal. This occurs due to a large number of meaningless links, namely, links connecting actors that did not actually interact. We focus our analysis on the fractal and modular properties of this resulting network, and show that the renormalization group analysis can characterize the self-similar structure of these networks.  相似文献   

4.
Studies of the time development of empirical networks usually investigate late stages where lasting connections have already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social network topology develops in real life. Studying students who are beginning their studies at a university with no or few prior connections to each other offers a unique opportunity to investigate the formation and early development of link patterns and community structure in social networks. During a nine week introductory physics course, first year physics students were asked to identify those with whom they communicated about problem solving in physics during the preceding week. We use these students'' self reports to produce time dependent student interaction networks. We investigate these networks to elucidate possible effects of different student attributes in early network formation. Changes in the weekly number of links show that while roughly half of all links change from week to week, students also reestablish a growing number of links as they progress through their first weeks of study. Using the Infomap community detection algorithm, we show that the networks exhibit community structure, and we use non-network student attributes, such as gender and end-of-course grade to characterize communities during their formation. Specifically, we develop a segregation measure and show that students structure themselves according to gender and pre-organized sections (in which students engage in problem solving and laboratory work), but not according to end-of-coure grade. Alluvial diagrams of consecutive weeks'' communities show that while student movement between groups are erratic in the beginnning of their studies, they stabilize somewhat towards the end of the course. Taken together, the analyses imply that student interaction networks stabilize quickly and that students establish collaborations based on who is immediately available to them and on observable personal characteristics.  相似文献   

5.
Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.  相似文献   

6.
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite–resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.  相似文献   

7.
Dynamics and Control of Diseases in Networks with Community Structure   总被引:1,自引:0,他引:1  
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.  相似文献   

8.
Statistically validated networks in bipartite complex systems   总被引:1,自引:0,他引:1  
Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved.  相似文献   

9.
To more effectively use a network of high performance computing clusters, allocating multi-process jobs across multiple connected clusters becomes an attractive possibility. This allocation process entails dividing the processes of a job among several clusters, which we refer to as co-allocation. Co-allocation offers the possibility of more efficient use of computer resources, reduced turn-around time and computations using numbers of processes larger than processes on any single cluster. In order to realize these possibilities, effective co-allocation, ultimately, depends on the inter-cluster communication cost. In this paper, we introduce a scalable co-allocation strategy called the Maximum Bandwidth Adjacent cluster Set (MBAS) strategy. The strategy makes use of two thresholds to control allocation: one to control the limit on bandwidth on usable inter-cluster communication links and another to control how jobs are split. A simulator that can simulate the dynamic behavior of jobs running across multiple clusters was developed and used to examine the performance of the MBAS co-allocation strategy. Our results indicate that by adjusting the thresholds for link level control and chunk size control in splitting jobs, the MBAS co-allocation strategy can significantly improve both user satisfaction and system utilization.  相似文献   

10.
Live virtual machine migration can have a major impact on how a cloud system performs, as it consumes significant amounts of network resources such as bandwidth. Migration contributes to an increase in consumption of network resources which leads to longer migration times and ultimately has a detrimental effect on the performance of a cloud computing system. Most industrial approaches use ad-hoc manual policies to migrate virtual machines. In this paper, we propose an autonomous network aware live migration strategy that observes the current demand level of a network and performs appropriate actions based on what it is experiencing. The Artificial Intelligence technique known as Reinforcement Learning acts as a decision support system, enabling an agent to learn optimal scheduling times for live migration while analysing current network traffic demand. We demonstrate that an autonomous agent can learn to utilise available resources when peak loads saturate the cloud network.  相似文献   

11.
A growing number of studies are investigating the effect of contact structure on the dynamics of epidemics in large-scale complex networks. Whether findings thus obtained apply also to networks of small size, and thus to many real-world biological applications, is still an open question. We use numerical simulations of disease spread in directed networks of 100 individual nodes with a constant number of links. We show that, no matter the type of network structure (local, small-world, random and scale-free), there is a linear threshold determined by the probability of infection transmission between connected nodes and the probability of infection persistence in an infected node. The threshold is significantly lower for scale-free networks compared to local, random and small-world ones only if super-connected nodes have a higher number of links both to and from other nodes. The starting point, the node at which the epidemic starts, does not affect the threshold conditions, but has a marked influence on the final size of the epidemic in all kinds of network. There is evidence that contact structure has an influence on the average final size of an epidemic across all starting nodes, with significantly lower values in scale-free networks at equilibrium. Simulations in scale-free networks show a distinctive time-series pattern, which, if found in a real epidemic, can be used to infer the underlying network structure. The findings have relevance also for meta-population ecology and species conservation.  相似文献   

12.
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.  相似文献   

13.
Contention-Aware Communication Schedule for High-Speed Communication   总被引:1,自引:0,他引:1  
A lot of efforts have been devoted to address the software overhead problem in the past decade, which is known as the major hindrance on high-speed communication. However, this paper shows that having a low-latency communication system does not guarantee to achieve high performance, as there are other communication issues that have not been fully addressed by the use of low-latency communication, such as contention and scheduling of communication events. In this paper, we use the complete exchange operation as a case study to show that with careful design of communication schedules, we can achieve efficient communication as well as prevent congestion. We have developed a complete exchange algorithm, the Synchronous Shuffle Exchange, which is an optimal algorithm on the non-blocking network. To avoid congestion loss caused by the non-deterministic delays in communication events, a global congestion control scheme is introduced. This scheme coordinates all participating nodes to monitor and regulate the traffic load, which effectively avoids congestion loss and maintains sufficient throughput to maximize the performance. To improve the effectiveness of the congestion control scheme when working on the hierarchical network, we incorporate information on the network topology to devise a contention-aware permutation. This permutation scheme generates a communication schedule, which is both node and switch contention-free as well as distributing the network loads more evenly across the hierarchy. This relieves the congestion build-up at the uplink ports and improves the synchronism of the traffic information exchange between cluster nodes. Performance results of our implementation on a 32-node cluster with various network configurations are examined and reported in this paper.  相似文献   

14.
Using a modified one-dimensional model for the spread of an SIS disease on a network, we show that the behaviour of complex network simulations can be replicated with a simpler model. This model is then used to design optimal controls for use on the network, which would otherwise be unfeasible to obtain, resulting in information about how best to combine a population-level random intervention with one that is more targeted. This technique is used to minimise intervention costs over a short time interval with a target prevalence, and also to minimise prevalence with a specified budget. When applied to chlamydia, we find results consistent with previous work; that is maximising targeted control (contact tracing) is important to using resources effectively, while high-intensity bursts of population control (screening) are more effective than maintaining a high level of coverage.  相似文献   

15.
Patterns of sexual mixing and heterogeneity in the number of sexual partners can have a huge effect on the spread of a sexually transmitted disease (STD). The sexual mixing network identifies all partnerships within a population over a given period and is a powerful tool in the study of such infections. Previous models assumed all links within the network to be concurrent active partnerships. We present a novel modelling approach in which we adapt the notion of a sexual contact network to a monogamous population by allowing the nature of the links to change. We use the underlying network to represent potential sexual partnerships, only some of which are active at any one time. Thus serial monogamy can be modelled while maintaining the patterns of mixing displayed by the population.  相似文献   

16.
The problem of constructing an optimal rooted phylogenetic network from an arbitrary set of rooted triplets is an NP-hard problem. In this paper, we present a heuristic algorithm called TripNet, which tries to construct a rooted phylogenetic network with the minimum number of reticulation nodes from an arbitrary set of rooted triplets. Despite of current methods that work for dense set of rooted triplets, a key innovation is the applicability of TripNet to non-dense set of rooted triplets. We prove some theorems to clarify the performance of the algorithm. To demonstrate the efficiency of TripNet, we compared TripNet with SIMPLISTIC. It is the only available software which has the ability to return some rooted phylogenetic network consistent with a given dense set of rooted triplets. But the results show that for complex networks with high levels, the SIMPLISTIC running time increased abruptly. However in all cases TripNet outputs an appropriate rooted phylogenetic network in an acceptable time. Also we tetsed TripNet on the Yeast data. The results show that Both TripNet and optimal networks have the same clustering and TripNet produced a level-3 network which contains only one more reticulation node than the optimal network.  相似文献   

17.
In this paper, we consider the problem of scheduling and mapping precedence-constrained tasks to a network of heterogeneous processors. In such systems, processors are usually physically distributed, implying that the communication cost is considerably higher than in tightly coupled multiprocessors. Therefore, scheduling and mapping algorithms for such systems must schedule the tasks as well as the communication traffic by treating both the processors and communication links as equally important resources. We propose an algorithm that achieves these objectives and adapts its task scheduling and mapping decisions according to the given network topology. Just like tasks, messages are also scheduled and mapped to suitable links during the minimization of the finish times of tasks. Heterogeneity of processors is exploited by scheduling critical tasks to the fastest processors. Our experimental study has demonstrated that the proposed algorithm is efficient and robust, and yields consistent performance over a wide range of scheduling parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We introduce an algorithm able to reconstruct the relevant network structure on which the time evolution of country-product bipartite networks takes place. The significant links are obtained by selecting the largest values of the projected matrix. We first perform a number of tests of this filtering procedure on synthetic cases and a toy model. Then we analyze the bipartite network constituted by countries and exported products, using two databases for a total of almost 50 years. It is then possible to build a hierarchically directed network, in which the taxonomy of products emerges in a natural way. We study the influence of the structure of this taxonomy network on countries'' development; in particular, guided by an example taken from the industrialization of South Korea, we link the structure of the taxonomy network to the empirical temporal connections between product activations, finding that the most relevant edges for countries'' development are the ones suggested by our network. These results suggest paths in the product space which are easier to achieve, and so can drive countries'' policies in the industrialization process.  相似文献   

19.
A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents independent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号